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In this study, we consider the optimal portfolio selection problem with a value-at-risk constraint in the non-

extensive statistical mechanics framework. We propose a portfolio selection model, which is suitable not only
for normal return distributions, but also for non-normal return distributions. Using Chinese stock data, under
the normal and q-Gaussian return distributions, we provide empirical results. The results indicate that portfolio
selections under the q-Gaussian return distributions are considerably different from those under the normal return
distributions. Moreover, by using the q-Gaussian distribution, the underestimated portfolio risk can be effectively
avoided.
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1. Introduction

The optimal portfolio problem is a crucial issue in
finance. In 1952, Markowitz first provided the mean-
variance approach for optimal portfolio allocation prob-
lem [1]. In the mean-variance model, the risk is defined
as the variation of portfolio returns, which implies that
agents weigh the probability of negative yields equally
to positive yields. However, investors usually treat gains
and losses asymmetrically. Recently, some methods mea-
suring the downside risk have been proposed, including
semi-variance [2, 3], lower partial moment [4, 5], lower
partial standard deviation [6], value-at-risk (VaR) [7–9]
and conditional tail expectation [10, 11]. Among them,
the value-at-risk is one of the most popular measuring
risk methods in the practice of risk management. It is
defined as the maximum expected loss given a confidence
level over a fixed time horizon. For example, a VaR with
1% tolerance level for a 5-day holding period, means that
the maximum loss incurred during 5 days should exceed
the VaR only once in every 100 cases. In practice, agents
not only pursue maximum profit but also need to take
into account controlling or limiting the amount of risk.
Some methods have been introduced to discuss the mean-
VaR optimal portfolio, in which the VaR is used as a risk
constraint imposed on the problem of maximizing the
mean of portfolio yields [12]. However, it is in the case
that the returns distributions are normal. Several empir-
ical results have indicated that the returns of financial
quantities have fat-tail characteristics [13–15].

The Tsallis statistics is a generalization of Boltzmann–
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Gibbs statistics. In 1988, it was proposed by Tsallis with
the motivation of providing a statistical framework for
far-from-equilibrium complex systems [16]. Recently, the
Tsallis statistics mechanics has been successfully applied
to study the fluctuations of financial markets. For exam-
ple, Rak et al. and Bil et al. studied fluctuations of the
Polish stock market using the Tsallis statistical mechan-
ics [17, 18]. Borland developed an option pricing model in
the framework of the Tsallis non-extensive statistical me-
chanics and found that the model can effectively reduce
the volatility smile [19]. Kozaki and Sato applied the
Tsallis statistical mechanics to stock market and stud-
ied the problem of portfolio risk management [20]. Na-
maki et al. proposed a Tsallis non-extensive statistical
approach for detecting crises of emerging and mature
markets and found that the index q in the crise period is
much greater than that in the other period [21]. Multi-
ple studies have shown that the non-extensive statistical
mechanics is a good tool in the financial field [22–25].

In this paper, we propose an optimal portfolio selection
model in the framework of Tsallis non-extensive statisti-
cal mechanics and imposing value-at-risk constraints.

This article is structured as follows. In Sect. 2, we
shall give a brief explanation of Tsallis statistics and q-
Gaussian distributions. In Sect. 3, we shall propose an
optimal portfolio selection model, which maximizes ex-
pected return subject to a value-at-risk constraint. More-
over, our model is suitable not only for the normal re-
turn distributions but also for non-normal distributions.
In Sect. 4, we shall compare the differences of the opti-
mal portfolio strategies under q-Gaussian returns distri-
butions and normal returns distributions using Chinese
stock market data. Empirical results will be presented.
In the final section, we shall summarize the paper.
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2. Tsallis statistics and q-Gaussian distribution

The Tsallis entropy is a generalization of the Shan-
non entropy, which considers multi-fractal structures and
long-range interactions of systems [26]. It is defined as:

dSq =
1−

∫
P (x)q dx

q − 1
(1)

under constraints∫
P (x)dx = 1, (2)∫
P (x)qx2dx∫
P (x)q dx

= σ2 (3)

yields a q-Gaussian probability density function

P (x) =
1

zq
(1− βq(1− q)x2)

1
1−q , (4)

where
zq = ((2− q)(3− q)c)

1
3−q , (5)

βq = c
1−q
3−q ((2− q)(3− q))

−2
3−q , (6)

c =
π

q − 1

Γ2( 1
q−1 −

1
2 )

Γ2( 1
q−1 )

. (7)

Γ(x) is gamma function defined by:

Γ(x) =

∫ +∞

0

tx−1 e−tdt. (8)

Several results have shown that the q-Gaussian distri-
butions can fit the fat tails of financial quantities quite
well [27–31]. For q = 1, the q-Gaussian distribution
is equivalent to a Gaussian distribution. However, for
q > 1, the q-Gaussian distribution has the power-law
characteristic and exhibits fat tails.

In this paper, we will employ the q-Gaussian distri-
bution derived by using the non-extensive statistics me-
chanics to fit empirical distributions of returns.

3. Portfolio selection model
with value-at-risk constraint

In this section, we shall present a portfolio selection
model with a value-at-risk constraint. That is, we use
value-at-risk as the measure for risk and derive an opti-
mal portfolio in the case that the maximum expected loss
would not exceed the value-at-risk at a given confidence
level.

We consider a financial model consisting of a financing
bank account and n risky assets stocks. Suppose that
an agent has the initial capital W0 to be invested over
a finite investment horizon [0, T ] and B is the amount
borrowed from the bank, rf is a borrowing rate, wi is the
proportion invested in the i-th stock and

∑n
i=1 wi = 1.

Pi,t is the price of the i-th stock at the time t. Hence,
the initial portfolio satisfies

W0 +B =

n∑
i=1

wiPi,0. (9)

According to the definition of value-at-risk, at a given
confidence level α, the agent needs to select a portfolio
to make the final wealth satisfy

Prob{W0 −WT ≤ V aR} = α. (10)
Suppose that rw is the total expected return of a port-
folio w over a finite investment horizon [0, T ]. Then, on
the portfolio w, at the end of the investment horizon T ,
the expected wealth becomes

E[WT,w] = (W0 +B)(1 + rw)−B(1 + rf )

= W0(1 + rw) +B(rw − rf ). (11)
In Eq. (11), replacing B with Eq. (9) we obtain

E[WT,w] = W0(1 + rw) + (

n∑
i=1

wiPi,0 −W0)(rw − rf )

= W0 +W0rw +

n∑
i=1

wiPi,0(rw − rf )−W0rw +W0rf

= W0(1 + rf ) +

n∑
i=1

wiPi,0(rw − rf ). (12)

Equation (10) substituted with Eq. (12) becomes

Prob
(
rw ≥ −

V aR+W0rf∑n
i=1 wiPi,0

+ rf

)
= α. (13)

Now, we employ the q-Gaussian distribution to fit the
expected return distribution for the portfolio w. Let
qα,w denote the quantile corresponding to probability α
of the q-Gaussian distribution for the portfolio w. Then,
Eq. (13) can be written as

q1−α,w = −V aR+W0rf∑n
i=1 wiPi,0

+ rf , (14)

that is
n∑
i=1

wiPi,0 =
V aR+W0rf
rf − q1−α,w

. (15)

Equation (12) substituted with Eq. (15) becomes

E[WT,w] = W0(1 + rf ) +
V aR+W0rf
rf − q1−α,w

(rw − rf ). (16)

Equation (16) divided by W0 becomes

E[
WT,w

W0
] = (1 + rf ) +

V aR+W0rf
W0(rf − q1−α,w)

(rw − rf ). (17)

We know that an agent hopes to find a portfolio w∗,
which can maximize the final wealth. That is, we need
select a portfolio strategy to maximize Eq. (17). Since
the VaR is the biggest loss given by the investor and rf
is a constant, maximizing Eq. (17) can be written as

max
w

=
rw − rf

rf − q1−α,w
, if

n∑
i=1

wi = 1. (18)

From Eq. (18), we can note that initial wealth W0 and
borrowed B do not affect the selection of the optimal
portfolio.
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4. Empirical results

To test our model, we randomly select four stocks in
Chinese stock market and employ daily data from 2013-
2-1 until 2014-9-9. Let borrowing rate rf = 0.06.

Table I gives the summary statistics for the four stocks
returns. The table shows that the returns of the four
stocks have significant kurtosis and we have enough evi-
dences to reject the null hypothesis. Hence, there will be
great deviations if we use the normal distribution to fit
the empirical distribution of the returns.

TABLE I
Summary statistics of four stocks returns

stock code 600136 600624 600088 600639
mean 0.0016 0.0014 0.0001 0.0008
standard deviation 0.0270 0.0320 0.0269 0.0220
skewness –0.0040 –0.2301 0.0645 0.3511
kurtosis 5.7746 3.7949 4.0534 7.8335
Kolmogorov–Smirnov 1 1 1 1

Table II shows the changes of the optimal portfolio
allocations at the different confidence levels of VaR con-
straints under the assumption of the q-Gaussian distri-
bution. The VaRs for 1$ held in the portfolios are given
in the final column. We can find that the allocations and
VaRs of the four stocks are significantly different at dif-
ferent confidence levels. For example, at the confidence
level α = 0.95, the return of the portfolio is maximum
at the allocation of 37.05% stock 600136, 2.30% stock
600624, 7.78% stock 600088 and 52.87% stock 600639 and
the VaR of the optimal portfolio is −2.2965. However,
at the confidence level α = 0.99, the allocation is 41.21%
stock 600136, 9.01% stock 600624, 4.08% stock 600088
and 45.70% stock 600639 and the VaR is −4.0491. More-
over, the smaller tolerance level 1 − α then the greater
return and absolute VaR of the optimal portfolio.

TABLE II

Optimal portfolios under the q-Gaussian distribution

Confidence
level

600136 600624 600088 600639
Portfolio
return

Portfolio
VaR

0.95 0.3705 0.0230 0.0778 0.5287 0.4305 –2.2965
0.96 0.3767 0.0548 0.0503 0.5182 0.4355 –2.3850
0.97 0.3852 0.0587 0.0486 0.5075 0.4548 –2.6229
0.98 0.3967 0.0672 0.0472 0.4889 0.4624 –3.1061
0.99 0.4121 0.0901 0.0408 0.4570 0.4772 –4.0491

Table III shows the differences of the optimal port-
folio allocations at the diverse confidence levels of VaR
constraints under the normal distribution. We can
obtain that Table III has the similar law with Ta-
ble II. However, there are several differences between
them. At the same confidence level α, firstly, the
optimal portfolio allocation in Table III is different
from that in Table II. Secondly, the absolute VaR of
the optimal portfolio is greater under the q-Gaussian
distribution than that under the normal distribution,

that is to say the portfolio risk is underestimated in the
case that yields follow a normal distribution.

TABLE III

Optimal portfolios under the normal distribution

Confidence
level

600136 600624 600088 600639
Portfolio
return

Portfolio
VaR

0.95 0.2081 0.3186 0.1710 0.3023 0.4337 –2.2710
0.96 0.3258 0.2010 0.1602 0.3130 0.4468 –2.3393
0.97 0.3556 0.2211 0.1100 0.3133 0.4776 –2.6095
0.98 0.3665 0.2700 0.1305 0.2330 0.4918 –2.9729
0.99 0.3675 0.3221 0.1090 0.2014 0.5138 –3.5625

5. Summary

In this paper, we proposed an optimal portfolio model
with the value-at-risk constraint. Moreover, we consid-
ered the fat-tail characteristics of stock returns under the
Tsallis statistical mechanics framework. the empirical re-
sults indicated that Tsallis statistical mechanics can be
applied to the financial market well. Compared with the
normal distribution, the optimal portfolio selection em-
ployed the q-Gaussian distribution can effectively avoid
underestimating the risk.
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