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The aim of this study is to investigate the influence of spin degrees of freedom on the flux quantization in a

2D Josephson junction. One of the most important properties of the Josephson structures is the total quantum
flux which can be related to the phase difference across the junction. For example the sign of the phase difference
controls the direction of the Josephson current while the magnitude of the phase difference affect the critical
current itself. So far in literature to calculate the total quantum flux in the Josephson structures only the flux
of the external magnetic field (and hence the external vector potential) has been considered but the intrinsic
quantum flux of correlated electrons and holes have not been taken into account. We have recently calculated
the intrinsic quantized magnetic flux of electrons and holes. We showed that depending on the spin orientations,
the spin contribution to the quantized intrinsic flux of a correlated electron is equal to (Φint = ± g∗Φ0

2
). Here g∗

is the effective Landé g-factor and Φ0 is the unit of flux (fluxoid). In the present study we calculate the above
mentioned phase differences across the junction considering the intrinsic quantum flux of electrons and holes. For
electrons the additional flux contribution will be: ∆Φint = ± g∗eΦ0

2
and for holes, the related contribution will be:

∆Φint = ± g∗hΦ0

2
. We show that, for both charge carriers, the effective Landé g-factors (g∗e , g∗h), take only even

integer values such as (0, 2, 4, . . .). The present calculations can be easily extended to the intrinsic Josephson
junctions as well. We found that flux contribution to the total flux due to spin is very important and it is in fact
±Φ0/2 depending on the spin up and down cases or the ground state.
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1. Introduction

Layered high-temperature superconducting materials
such as Bi2Sr2CaCu2Ox (BSCCO) are composed of su-
perconducting cuprite layers coupled by the Josephson
interaction. This system possesses the Josephson effect
at the atomic scale and is called the intrinsic Joseph-
son effect [1]. It is believed that superconductivity and
the charge transport are mostly confined to the CuO2

planes. Therefore, we can assume that on each CuO2

plane we have a two-dimensional (2D) electron system
where we have the Landau quantization similar to the
quantum Hall effect (QHE) systems. One of the most
important properties of the Josephson structure is the
total quantum flux [2] which can be related to the phase
difference across the junction, the sign of the phase dif-
ference controls the direction of the Josephson current
while the magnitude of the phase difference affects the
critical current itself [3–6]:

Jtot = Jmax cos

(
eΦtot

~

)
, (1)

where Jmax = 2J0 sin δ and δ = θ2 − θ1 is the phase dif-
ference and Φtot is [7]:

Φtot =

(
l + 1

2
± g∗

4

)
Φ0. (2)

∗corresponding author; e-mail: zsaglam@aksaray.edu.tr

In Eq. (2) the last term is the spin contribution of the
quantized intrinsic flux of a correlated electron and hole
(Φint = ± g∗Φ0

2 ). Here l = (0, 1, 2, . . .), g∗ is the effective
Landé g-factor and Φ0 is the unit of flux (fluxoid). In all
these calculations the starting point is the canonical mo-
mentum of the charge carriers (electrons and holes with
charge q). For an electron the canonical momentum is
given by [8]:

(Jc)z = (r × p) =
[
r ×m0v −

e

c
r ×A

]
z

=

Jz −
e

2πc
Φ. (3)

Magnetic flux quantization was first recognized by Lon-
don [9] and Onsager [10] who predicted that the enclosed
flux through a superconducting ring is quantized in units
of Φ0 = hc

e . Later, quantization of magnetic flux was
experimentally observed in hollow superconducting cylin-
der [11, 12] and some of the properties in the same system
has been theoretically studied [13]. Wan and Saglam [14]
calculated the intrinsic magnetic flux associated with the
electron’s orbital and spin motions. They have obtained
three basic magnetic flux quanta: the electron orbital
magnetic flux quantum Φ

(0)
e = hc

e , the electron spin
magnetic flux quantum Φ

(s)
e = hc

2e and the magnetic
flux quantum due to supercurrent in a superconducting
ring, so-called the Cooper pair magnetic flux quantum
Φ

(sr)
e = hc

2e which has a magnitude of 2.07× 10−15 T m2,
measured by Deaver and Fairbank [11]. Saglam and
Sahin [15] have calculated the intrinsic quantized mag-
netic flux of electron (and positron) in a uniform mag-

(1129)

http://doi.org/10.12693/APhysPolA.133.1129
mailto:zsaglam@aksaray.edu.tr


1130 Z. Saglam, B. Boyacioglu

netic field and found the spin-dependent quantum fluxes
that an electron and positron carries with itself along the
propagation direction even in the absence of the mag-
netic field. Saglam and Boyacıoglu [16] also calculated
the effective Landé g-factor of two-dimensional systems
by a simple diagram method which demonstrated that
the crossing points correspond to the quantum entangle-
ments of two different Landau states. In literature, the
flux of the external magnetic field (and hence the ex-
ternal vector potential) has been considered to calculate
the total quantum flux in the Josephson structures but,
to our knowledge, no investigation has been made on the
intrinsic quantum flux of correlated electrons and holes
for the Josephson systems. In this work, we show the
application of the quantized intrinsic quantum flux of a
correlated electron and a hole in the Josephson junctions.

2. Formalism

In the presence of an external magnetic field B along
the z-direction, the one electron Hamiltonian of the 2D
system is written as

H = H0 +HZeeman +He.l +He.e =
p2x
2m

+

(py − eBx)
2

2m
− gµBBσ + Ve.l + Ve.e, (4)

where H0 is kinetic energy operator for free electron.
HZeeman is Zeeman potential. He.l is electron–lattice in-
teraction andHe.e is electron–electron interaction (cover-
ing exchange potential and the Hartree electrostatic po-
tential). In the Zeeman term g is Landé g-factor. σ = ± 1

2

is the spin number and µB = e~
2m . For strong magnetic

field H ′ = He.l + He.e can be treated as a small pertur-
bation. The effect of H ′ can be the lumped in the ef-
fective mass (m∗), effective magnetic field (B∗), and the
effective Landé g-factor (g∗). In this effective parameters
approximation the eigenvalues corresponding to Eq. (4)
read [16]:

ELandau = [(l + 1
2
) ~ω∗c ± 1

2
g∗µ∗BB

∗] =(
l + 1

2
± g∗

4

)
~ω∗c , (5)

where µ∗B is the effective Bohr magneton, ω∗c is the ef-
fective cyclotron angular frequency, and l = (0, 1, 2, . . .)
is the Landau index. The quantum flux associated with
the above eigenvalues, calculated by Saglam [7], is given
by

ΦLandau =

(
l + 1

2
± g∗

4

)
Φ0, (6)

where Φ0 = hc
e is the flux unit. The last terms in

Eq. (5) and Eq. (6) correspond to the spinning motion
of an electron (+ sign corresponds to spin-up case and
– sign corresponds to spin down case). Next, we de-
fine the dimensionless quantity νl = ELandau

~ω∗
c

which is
the conventional filling factor. Thus, when plotting νl
against |g∗| the crossings occur at the even integer val-
ues of g∗(0, 2, 4, . . .) [16]. At the crossing points two
states with opposite spins coincide at the same energy

and the flux. Therefore, these points correspond to the
quantum entanglements of two different Landau states.
When a superconducting ring is placed in a weak mag-
netic field, the field lines are expelled from the supercon-
ductor and the magnetic flux through the ring takes the
values nΦ0, where Φ0 = hc

2e and n is a non-zero integer
(±1,±2,±3 . . .). For classical superconductors, London
and London [17] explained the Meissner effect by using
a classical model based on the Maxwell equations and
minimizing the associated free energy. The calculated
penetration depths λ were in the range of 10−100 µm.
Therefore when the planar size of the superconductor
becomes comparable with λ2 the above mentioned clas-
sical model becomes inapplicable. Because of the grow-
ing need to reduce the sizes into sub-micrometers (e.g.
quantum computers, superconducting quantum interfer-
ence devices (SQUID) [17, 18]), we have developed a
quantum model which is based on the quantum entan-
glement of the Landau states of electrons and holes in
the system. Because of the additional Zeeman energy
term EZeeman = ± g∗~ωc

4 to the quantized Landau ener-
gies [7] given by ELandau, we have entanglements of the
states resulting zero total spin. A dimensionless func-
tion f (n, g∗) = (ELandau + EZeeman) /~ωc which takes
the form f (n, g∗) =

(
n+ 1

2
± g∗

4

)
is defined (here n

stands for l) the difference between νl and f (n, g∗) is the
additional Zeeman energy term. The plots of function
f (n, g∗) ≡ f (l, g∗) with respect to g∗ shows that g∗ takes
only even integer values. Here, g∗ is treated as a vary-
ing parameter. If we do not consider spin (g∗ = 0), the
Landau orbits in real space will be as shown in Fig. 1a.
In the ground state electron will rotate in a circular or-
bit with radius r0 which is equal to the magnetic length
(λML) as

r0 = λML =

√
~c
eB∗

. (7)

Then, the flux corresponding to the ground state orbit
will be

Φ0/2 = πλ2B, (8)
which is obtained from Eqs. (2) and (7) by setting l =
0. For large l values the cyclotron radius is given by
rl =

√
2l + 1r0 =

√
2l + 1

√
~c
eB∗ . For example, in the

ground state because of the spinning motion of an elec-
tron we will have an additional, Φ0/2 flux term, and the
orbits in real space will be similar to Fig. 1b which shows
Landau orbits for spin-up electrons, for spin-down elec-
trons this additional contribution will be −Φ0/2.

3. Application of Landau quantization
to a 2D superconducting nanoring

Let us consider a superconducting ring of the inner ra-
dius a and the outer radius b. To treat the correlated
electrons (holes) in quantum mechanical way, several im-
portant questions to be answered: At what limit, we treat
electrons to be correlated and degenerated, so quantum
mechanically considered?
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Fig. 1. Landau orbits for electrons: (a) without spin,
(b) in real space for spin-up electrons.

From quantum statistic to treat electrons quantum
mechanically the condition requires that the de Broglie
wavelength of electrons, λde−Broglie must be comparable
with the size of the system

λde−Broglie =
h

p
≈ 2b. (9)

Using Eq. (5) and E = p2

2m , one can write

p =
√

2l + 1
√
m~ω∗c . (10)

By substituting Eq. (10) in Eq. (9) one can find the
following relations for λde−Broglie and b:

b ≈ π√
2l + 1

√
~c
eB

. (11)

Using Eqs. (5) and (9) we can write

λ ≈
√

2l + 1

π2
b. (12)

Since λ<b then we get l ≤ 5 (l ≤ 5 corresponds to n ≤ 6
which also agrees with the periodic table elements). That
means, in a SQUID, the filling factor cannot exceed 5. So
from Eq. (7) and Eq. (11) we can find lower and upper
limits of system size.

TABLE I
Ten rl values (l = 0, 1, . . . 9) corresponding to 10 different mag-
netic field values in the range (0.01 T ≤ B ≤ 10 T) are listed.

B r0 r1 r2 r3 r4 r5 r6 r7 r8 r9

0.01 256.50 444.27 573.55 678.64 769.50 850.71 924.82 993.42 1057.58 1118.06
0.1 81.11 140.49 181.38 214.60 243.33 269.04 292.44 314.14 334.42 353.64
1 25.65 44.42 57.35 67.97 76.95 85.08 92.48 99.26 105.75 111.83
2 18.13 31.40 40.53 48.04 54.39 60.13 65.37 70.22 74.75 79.05
3 14.81 25.65 33.12 39.25 44.43 49.12 53.40 57.36 61.06 64.57
4 12.82 22.20 28.67 33.97 38.46 42.52 46.22 49.65 52.86 55.90
5 11.47 19.87 25.65 30.40 34.41 38.05 41.36 44.42 47.29 50.01
6 10.47 18.13 23.41 27.75 31.41 34.72 37.75 40.55 43.16 45.65
8 9.07 15.71 20.50 24.04 27.21 30.09 32.70 35.12 37.40 39.54
10 8.11 14.05 18.13 21.49 24.33 26.90 29.24 31.41 33.44 35.36

In Table I, we have tabulated our calculations for 10
different rl values corresponding to 10 different magnetic
field values in the range 0.01 T ≤ B ≤ 10 T. Here we
can see the superconducting ring of the inner and outer
radius, a and b respectively, also the distance between
electron and hole charges. Therefore, a superconducting
ring of the inner radius a (10 nm < a < 100 nm) and
the outer radius b (100 nm < b < 1000 nm) will have the
good size (as in SQUIDs) to study the quantum effects
for magnetic fields. When it is placed in a magnetic field
the charge distribution will be as in Fig. 2a and it can be
equivalently replaced with the charge distribution shown
in Fig. 2b.

The present model explains the Meissner effect very
well and can be extended to the intrinsic quantum
Josephson junction as well. In order to calculate the total
quantum flux in the Josephson structures only the flux of
the external magnetic field (and hence the external vec-
tor potential) has been considered in literature. To show

Fig. 2. (a) Electron–hole representation and (b)
Cooper pairs.

the spin contribution to the total flux we take the results
of Saglam [7] and Saglam and Boyacıoglu [19]; depending
on the spin orientations, to the quantized intrinsic flux
of a correlated electron (or hole) is equal to

Φint = ±g
∗Φ0

2
. (13)

In the present study, considering the intrinsic quantum
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flux of electrons and holes, we have calculated the above
mentioned phase differences across the Josephson junc-
tion. For electrons the additional flux contribution takes
the value

∆Φint = ±g
∗
eΦ0

2
(14)

and for holes, the related contribution is

∆Φint = ±g
∗
hΦ0

2
. (15)
4. Conclusions

We have calculated the quantized intrinsic flux of a
correlated electron and hole and showed that, for both
charge carriers, the effective Landé g-factors (g∗e , g∗h)
takes only even integer values. We have calculated ten
different cyclotron radii for large Landau orbits l in a
magnetic field ranging from 0.01 T to 10 T. We have
presented the application of intrinsic quantized flux of
electron and hole in the Josephson structure. Our cal-
culations also demonstrated that Φtot is as a function of
B∗, g∗ (effective Landé g-factor) and the spin orientation.

Appendix: Calculation of the magnetic flux
for a spinning electron (hole)

Spin magnetic moment of a free electron is given by
µ = gµBS, (A.1)

where ~S is the spin angular momentum of the electron.
When we introduce the magnetic field B = Bz, the z
component of the magnetic moments becomes

µz = ±µB = ± e~
2mc

. (A.2)

Following Saglam and Boyacıoglu [19] we assume that
spin angular momentum of the electron (hole) is pro-
duced by the fictitious point charge ±e rotating in a cir-
cular orbit with the angular frequency ωs and radius R
in x−y plane. As it is shown in [19] as far as the mag-
netic flux is concerned the radius are is a phenomenal
concept whose detailed calculation in terms of electron
(hole) radius is not important here. When we put spin-
ning electron (hole) in an external magnetic field B, the
field will not change the electron’s intrinsic angular ve-
locity ωs (because ωs � ωc = eB/mc). But it will apply
a tork of µ × B which becomes zero when the spin is
either parallel or antiparallel to the magnetic field. In
this case z-component of this magnetic moment for spin-
down electron will be

µz = −IA
c

=
eωsA

2πc
, (A.3)

where A = πR2 is the area of the above mentioned cir-
cular loop. If we compare (A.2) and (A.3) we find

A = − h

2mωs
. (A.4)

Now we want to calculate the flux for spin-down electron
during the cyclotron period Tc.

It is worth to note that during the cyclotron period Tc
electron will complete ωs/ωc turns about itself. So the
total flux during the cyclotron period will be

φ(↓) =
ωs

ωc
AB. (A.5)

Substitution of (A.4) and ωc = eB/mc in (A.5) gives

∆Φe
int = ±g

∗
eΦ0

2
, ∆Φh

int = ∓g
∗
hΦ0

2

∆Φint = ±g
∗
eΦ0

2
, φ(↓) =

hc

2e
=
φ0
2
. (A.6)

Similarly the flux for the spin-up electron will take the
form

φ(↑) =
hc

2e
= −φ0

2
. (A.7)

Now if we follow similar procedure for spin-up and spin-
down holes we get

φ(↓) = −φ0
2

(A.8)

and

φ(↑) = +
φ0
2
. (A.9)

From the above equations the change of the flux in the
flip will be

∆φ = ±φ0. (10)
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