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The Quasiparticle Electronic Energy Bands of the Cubic
KMgF3 Perovskite under Pressure Effect
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First-principles calculations have been carried out to study the electronic properties of the KMgF3 perovskite
crystal. On first stage the calculations were performed within the generalized gradient approximation. On the sec-
ond stage we have evaluated the quasiparticle corrections to the generalized gradient approximation band structure.
These significantly improved electronic energies have been found here for the first time on base of the quasiparticle
approach as implemented in the ABINIT code. Also, the pressure dependent parameters of electronic energy band
spectra were found in the generalized gradient approximation. For the first time the pressure dependent electronic
band energies have been evaluated within the quasiparticle approach. The generalized gradient approximation
band gap parameters are in good agreement with the literature data, obtained with local density approximation or
generalized gradient approximation exchange-correlation functionals and are much underestimated compared with
the experiment. The quasiparticle band gap agrees well with the measured value.
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1. Introduction

KMgF3 is an important material with a wide variety
of technological applications, such as scintillator [1–4],
dosimeter [5, 6], and window materials in the ultravio-
let (UV) and vacuum-ultraviolet (VUV) wavelength re-
gion [7–9]. A theoretical study of the structural, elec-
tronic and optical properties of KMgF3 was performed
in [10] within the full-potential linearized augmented
plane wave method (FP-LAPW). Electronic structures
and absorption spectra for a perfect KMgF3 crystal and
a KMgF3 crystal containing a potassium vacancy V−K

were calculated in [11] using CASTEP density functional
theory code. First principles investigations of struc-
tural, electronic, elastic, and dielectric properties within
the generalized gradient approximation (GGA) Perdew–
Burke–Ernzerhof approach, with projector augmented
wave (PAW) method, are presented in [12]. The elec-
tronic structures and absorption spectra on the polar-
ized light in the perfect KMgF3 crystal and the KMgF3

crystal containing V( + F ) have been calculated using
density functional theory code CASTEP with the lat-
tice structure optimized [13]. High-pressure structural,
elastic and electronic properties of the scintillator host
material KMgF3 were obtained in [14]. Investigation of
the Fe3+ centers in perovskite KMgF3 through a combi-
nation of ab initio (density functional theory) and semi-
empirical (superposition model) calculations have been
presented in work [15].

The objective of the present work, at the first stage, is
to investigate the electronic structure of the perovskite
KMgF3 using the first-principles PAW approach within
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the GGA. At the second stage the aim of the work is to
evaluate the improved electronic band energies by means
of the Green function method, within the quasiparticle
approximation (GW). The pressure effect on the elec-
tronic band energies, found within the GGA and GW,
is also the problem to be solved in this research. The
remainder of the paper is organized as follows: Sect. 2
describes the calculation method, Sect. 3 presents the re-
sults and a discussion of the electronic and finally, Sect. 4
summarizes the conclusions of this work.

2. Computational details

2.1. The projector augmented waves

The PAW [16, 17] approach combines features of pseu-
dopotential and the full-potential linearized augmented
plane waves (FPLAPW) methods. The pseudo |ψ̃n(r)〉
and all-electron |ψn(r)〉 functions are connected among
themselves as follows:
|ψn(r)〉 = |ψ̃n(r)〉

+
∑
a

∑
i

(
|φai (r)〉 − |φ̃ai (r)〉

)
〈p̃ai |ψ̃n〉 , (1)

where |φai (r)〉 is atomic wave function, |φ̃ai (r)〉 is pseu-
dowave function, and 〈p̃ai | is a projector function. Sum-
mation in Eq. (1) is carried out over augmentation
spheres, which are numbered with index a, and the index
i = {n, l, m} corresponds to the quantum numbers. As
can be seen from Eq. (1):
|ψn(r)〉 = τ |ψ̃n(r)〉 , (2)

where operator τ is given by the following equa-
tion [16, 17]:

τ = 1 +
∑∑(

|φai 〉 − |φ̃ai 〉
)
〈p̃ai | . (3)

Substituting the all-electron function defined by Eq. (2)
into the Schrödinger equation

(990)
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H |ψnk〉 = |ψnk〉 εnk, (4)
we obtain the transformed equation

τ+Hτ |ψ̃nk〉 = τ+τ |ψ̃nk〉 εnk, (5)
which contains exactly the same electronic energy band
spectrum εnk as in Eq. (4). Here n denotes the band
number and k is a vector from the first Brillouin zone.

2.2. The quasiparticle energies

First, the electron energy εnk and eigenfunction ψ
nk

are searched in the GGA approach from Eq. (6) [18, 19]:

(−∇2 + Vext(r) + VH(r) + Vxc(r))ϕnk
(r) =

εnkϕnk
(r), (6)

where −∇2 is the kinetic energy operator, Vext denotes
the ionic pseudopotential, VH and Vxc are the Hartree
and exchange-correlation potential, respectively. Here n
and k denote a band index and a wave vector in the Bril-
louin zone, respectively. The quasiparticle energies Enk

and eigenfunctions ψnk can be obtained from the quasi-
particle Eq. (7) [18, 19]:

(−∇2 + Vext(r) + VH(r))ψnk(r)

+

∫
Σ (r, r′, Enk)ψnk(r

′)dr′ = Enkψnk(r), (7)

where Σ is the non-local self-energy operator. The wave
functions can be expanded as follows:

ψnk(r) =
∑
n′

ann′ϕ
n′k(r). (8)

From Eqs. (6)–(8) the perturbative quasiparticle Hamil-
tonian is obtained in the form

Hnn′(E) = εnkδnn′ + 〈ϕnk|Σ (E)− Vxc |ϕn′k〉 , (9)
where the second term in Eq. (9) represents a perturba-
tion.

The PAW functions have been generated for the
following valence basis states: {3s23p64s14p0}for K,
{2s22p63s23p0}for Mg, and {2s22p5}for F. All the PAW
basis functions were obtained using the program atom-
paw [20]. The radii of the augmentation spheres rPAW

are 2.5, 1.4, and 1.4 a.u. for K, Mg, and F, respectively.
The value of the lattice constant of the crystal KMgF3

used in calculations equals 4.057 Å. We have derived it
from minimization of the total energy E(a) where a is a
lattice parameter. Its value is well compared with the ex-
perimental one 3.987 Å [21]. For the other crystals, this
parameter was obtained by minimization of the static
lattice energy. The electronic energy bands have been
evaluated by means of the ABINIT code [22, 23]. In-
tegration over the Brillouin zone was performed on the
Monkhorst-Pack [24] grid of 8 ×8 ×8 in the GWA and
LDA calculation, respectively. The symmetry of the con-
sidered crystals KMgF3 is described by space group Pm-
3m (number 221) and the Bravais lattice is cP (primitive
cubic).

3. Results and discussions

Let us compare the results shown in Figs. 1, 2. The
width of the upper part of the valence band obtained
within the GGA (Fig. 1) equals approximately 3.5 eV.
The corresponding GW value (Fig. 2) is 4.0 eV. The
shortest distance between the upper part of the valence
band and the nearest narrow core band (GGA, Fig. 1) is
5.5 eV. The corresponding GW value (Fig. 2) is 4.5 eV.

Fig. 1. Energy band structure of KMgF3 obtained in
the GGA approach at ambient pressure.

Fig. 2. Energy band structure of KMgF3 obtained in
the GW approach at ambient pressure.

Table I shows the electronic band gaps evaluated here
(in first and fifth rows) and the values obtained in other
research. As can be seen from Table I our GGA results
are well compared with those obtained within GGA and
LDA in other works. Deserve the attention differences
in band gap values δE found here in the GW and GGA
approaches. They are different for all the direct interband
transitions.
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TABLE I

Energies of interband transitions in the LDA and GW
band structures of cubic perovskite KMgF3 (in eV) ob-
tained at ambient pressure. δE denotes the difference
between the band gaps EGW

g − EGGA
g obtained here.

Γ–R Γ–Γ X–X M–M R–R
GGA 6.99 7.31 10.32 10.60 10.22

LDA [8] 7.27
GGA [14] 6.95
GGA [25] 7.68 10.68 11.00 10.38

GW 11.72 12.04 15.58 16.54 15.71
δE 4.73 4.73 5.26 5.94 5.49

Expt. [8] 10.8

Our GW predicted fundamental indirect band gap is
larger than the experimental one of 0.92 eV. One should
be noted that long-wave value of the real part of dielec-
tric function ε1(0) = 1.90. Therefore, the crystal under
consideration is an example of the weakly correlated elec-
trons. Therefore, we can assume that the exciton binding
energy is 0.92 eV.

At last, let us consider the pressure dependences for
band gaps depicted in Figs. 3, 4. As can be seen from
Fig. 3 the GGA approach assumes that the values of the
interband gaps M -M and X-X at a pressure of 30 GPa
should be approximately the same. However, this con-
clusion is not supported by a more precise theory of GW
(Fig. 4). The band gaps X-X and R-R at an ambient
pressure obtained within the GGA would be approxi-
mately equal (Fig. 3). However, the X-X gap is slightly
less than R-R one, in the theory of GW, and they are
approximately equal at a pressure 5 GPa (Fig. 4). We de-
rived the interpolation formulae which express the value
εg of the band gap,

εg= c0+c1p + c2p
2 (10)

for the GGA and GW pressure dependences. The re-
spective coefficients are given in Table II. As can be seen
from Figs. 3, 4 the curves corresponding transitions Γ–Γ
and Γ–R are almost parallel. Mathematically, this fact
is confirmed by almost equal coefficients c1 (Table II) of
linear summand in the formula (10).

TABLE II

The coefficients of the band gap approximation as
a function of pressure calculated by the formula (10).

GGA GW
c0 c1 c2 c0 c1 c2

Γ–R 6.99 0.053 0.00043 11.72 0.061 0.00043
Γ–Γ 7.31 0.054 0.00039 12.04 0.061 0.00038
X–X 10.32 0.052 0.00012 15.58 0.064 0.00013
M–M 10.60 0.046 0.000030 16.54 0.056 0.000099
R–R 10.22 0.030 0.000042 15.71 0.039 0.000012

Fig. 3. Pressure dependence of band gaps in KMgF3

evaluated within the GGA formalism.

Fig. 4. Pressure dependence of band gaps in KMgF3

evaluated within the quasiparticle GW theory.

4. Summary and conclusions
For the first time for the crystal KMgF3 the quasipar-

ticle electronic energy bands have been evaluated. The
values of interband gaps were found depending on the hy-
drostatic pressure. The band gaps found here in the GGA
are well compared with results obtained in other works.
All the LDA and GGA band gap values are much under-
estimated with respect to available experimental data. In
particular, for the crystal KMgF3, we obtained the value
of the indirect band gap of 6.99 eV within the frame-
work of the GGA approach. Than we have calculated
the improved electronic energy bands by means of the
GW approach. The corresponding value of the band gap
is 11.72 eV and is in much closer agreement with the ex-
perimental one (10.8 eV) than the obtained here GGA
result. The band gap value evaluated within the GW ap-
proach exceeds the experiment by 0.92 eV. Therefore, we
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can estimate the exciton binding energy, which is equal
to 0.92 eV. The interpolation formulae for pressure de-
pendences of lowest interband transition energies have
been derived for all the direct and indirect band gaps.
The differences δE (Table I) significantly depend on the
wave vector, so the use of the scissor operator may be
characterized by some uncertainty.
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