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The structural and optical properties of the ZnO and Zn0.99O:Eu
3+ powders synthesized by the hydrothermal

method at two di�erent temperatures (150 ◦C and 250 ◦C) were studied. The ZnO and Zn0.99O:0.01Eu
3+ powders

synthesized at 150 and 250 ◦C showed rod- and �ower-like morphologies, respectively. The as-synthesized and
annealed ZnO and Zn0.99O:0.01Eu

3+ powders formed the wurtzite crystal structure and P63mc space group. The
crystallite size of the as-synthesized and annealed ZnO powders increased by the incorporation of Eu3+. The
photoluminescence properties of annealed Zn0.99O:0.01Eu

3+ powders were substantially improved by controlling
the synthesis temperature. The annealed Zn0.99O:0.01Eu

3+ powders synthesized at 250 ◦C displayed much stronger
emission intensity than those at 150 ◦C.
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1. Introduction

White light emitting diodes (LEDs) emerge as a vi-
tal alternative to replace traditional incandescent and
�uorescent lighting because of their high energy sav-
ing, high e�ciency, long lifetime, and environmentally
friendly characteristics [1, 2]. The white light can be
achieved by three di�erent ways, namely, (1) red (R),
green (G), and blue (B) LED chips, (2) the combination
of a blue LED chip and yellow phosphor, and (3) the
combination of a blue/ultraviolet (UV) LED chip and
RGB phosphors [3, 4]. Among these ways, white light-
ing by means of RGB phosphors is highly promising ow-
ing to the following advantages: high photoluminescence
(PL) e�ciency, a high color rendering index (CRI), and a
tunable correlated color temperature (CCT). It is known
that the PL e�ciency, CRI, and CCT of white LEDs
depend strongly on the performance of the phosphors
used [5]. Therefore, signi�cant attention has been paid
on the development of rare earth ions-doped phosphors.
Y2O2S:Eu

3+ is a commonly used red-emitting phosphor.
However, the phosphor exhibits lower emission e�ciency
in comparison with blue and green phosphors, evolution
of harmful gas such as sulphide, and insu�cient absorp-
tion in the near-UV/blue region [6, 7]. It is thus neces-
sary to develop e�cient red-emitting phosphors with high
stability and absorption e�ciency in the near-UV/blue
region for white LED applications.

Zinc oxide (ZnO) is an inorganic II�VI group semi-
conductor with a wide band gap (3.3 eV), high exci-
ton binding energy (60 meV), high transparency, high
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electron mobility, and strong room-temperature lumines-
cence [8, 9]. The wide band gap provides high breakdown
voltage (75 V), high ability to sustain large electric �elds,
low electronic noise, and high power operation. In addi-
tion, the high exciton binding energy o�ers high stability
against thermal dissociation of excitons, which is neces-
sary for optoelectronic devices [9]. These unique prop-
erties have made ZnO to be a very attractive material
for the applications of LEDs, scintillators, sensors, and
solar cells [8, 10]. In addition, ZnO has been used as
a host material for doping rare earth metal ions and/or
transition metal ions to emit blue, green, or red light;
the doping can modify the electronic structure of ZnO,
improving signi�cantly its PL properties.
It has been known that controlling the composition

and synthesis process is a feasible route for improving
PL performance. In this work, the structural and optical
properties of the ZnO and Eu3+-doped Zn0.99O:0.01Eu

3+

phosphors were studied. We doped 0.01Eu3+ into ZnO
because the solubility limit of Eu2O3 in ZnO is approx-
imately 2 mol.% [11�13]. The secondary phases related
to Eu2O3 can be formed above this solubility. The ZnO
and Zn0.99O:0.01Eu

3+ phosphors were synthesized by the
hydrothermal method at two di�erent temperatures (150
and 250 ◦C) by using Zn(NO3)2, Eu(NO3)3, and KOH.
The hydrothermal synthesis method is an attractive tech-
nique with several bene�ts, such as e�ective control of
size, morphology, and agglomeration of the particles, a
relatively low reaction temperature, cost e�ectiveness,
and environmentally benign route [14].

2. Experimental

The hydrothermal method was used for synthesiz-
ing ZnO and Zn0.99O:0.01Eu

3+ powders. Eu2O3 was
dissolved in HNO3 and heated to prepare Eu(NO3)3.
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Zn(NO3)2, Eu(NO3)3, and KOH were separately dis-
solved in deionized water and then mixed together. The
resultant mixture was stirred for 1 h with a magnetic stir-
rer to prepare a homogeneous solution. The solution was
transferred into a te�on-lined stainless steel autoclave
with a capacity of 300 ml, heated at two di�erent temper-
atures (150 and 250 ◦C) for 6 h, and then naturally cooled
down to room temperature. The resultant powders were
separated from the solution by centrifugation, washed
with ethanol and distilled water several times, and dried
at 60 ◦C for 24 h in an oven. Finally, the as-synthesized
powders were cooled down slowly to room temperature
and then ground into powders. The size and mor-
phological characteristics of the as-synthesized ZnO and
Zn0.99O:0.01Eu

3+ powders were investigated with a �eld-
emission scanning electron microscope (FE-SEM; Hitachi
S4700, Japan). The binding energy of constituent ele-
ments in the as-synthesized ZnO and Zn0.99O:0.01Eu

3+

powders was investigated by X-ray photoelectron spec-
troscopy (XPS; Kα, Thermo VG, U.K.). The crys-
tal structure of as-synthesized and annealed ZnO and
Zn0.99O:0.01Eu

3+ powders was analyzed with an X-ray
di�ractometer (XRD; Rigaku RINT2000, Japan). The
PL spectra of the powders were obtained with a spec-
tro�uorometer (FS-2, Scinco Co., Korea) equipped with
a xenon lamp. All emission spectra were obtained using
the same amount of phosphors and recorded under the
same conditions.

3. Results and discussion

FE-SEM images of the ZnO and Zn0.99O:0.01Eu
3+

powders synthesized at 150 and 250 ◦C are shown
in Fig. 1. The morphology of the ZnO and
Zn0.99O:0.01Eu

3+ powders depends strongly on the syn-
thesis temperature. The ZnO and Zn0.99O:0.01Eu

3+

powders synthesized at 150 ◦C show a rod-like morphol-
ogy (300�600 nm in length and 150�250 nm in diameter),
and its powder sizes increase by doping Eu3+ into the
ZnO. On the other hand, the ZnO and Zn0.99O:0.01Eu

3+

powders synthesized at 250 ◦C show a �ower-like mor-
phology. A similar behavior was reported for the
NaLa(MoO4)2 powders prepared by the hydrothermal
method [15].
Figure 2a displays the XPS survey spectra of the ZnO

and Zn0.99O:0.01Eu
3+ powders synthesized at 250 ◦C.

The XPS survey spectra show the peaks correspond-
ing to the constituent elements, Zn, Eu, and O. The
high-resolution spectra of Zn 2p and O 1s for the ZnO
and Zn0.99O:0.01Eu

3+ powders synthesized at 250 ◦C are
presented in Fig. 2b and c, respectively, and that of
Eu 3d for the Zn0.99O:0.01Eu

3+ powders is presented in
Fig. 2d. The high-resolution spectra of Zn in ZnO pow-
ders exhibit two peaks at 1021.5 and 1044.5 eV, which
are attributed to the Zn 2p3/2 and Zn 2p1/2, respectively
(Fig. 2b). This suggests that Zn ions exist in a divalent-
oxidation state. Similarly, the Zn 2p3/2 and Zn 2p1/2
peaks in Zn0.99O:0.01Eu

3+ powders are located at 1022.0
and 1045.0 eV, respectively. The binding energies of the

Fig. 1. FE-SEM images of the (a) ZnO and (b)
Zn0.99O:0.01Eu

3+ powders synthesized at 150 ◦C and of
the (c) ZnO and (d) Zn0.99O:0.01Eu

3+ powders synthe-
sized at 250 ◦C.

Zn 2p peaks for the Zn0.99O:0.01Eu
3+ powders are 0.5 eV

larger than those of ZnO powders. The higher binding
energies are caused by the electronic interaction between
the ZnO and Eu3+ [16]. The high-resolution spectra of
O 1s for the ZnO and Zn0.99O:0.01Eu

3+ powders are
presented in Fig. 2c. The peaks are slightly shifted to-
ward the higher binding energy with the incorporation
of Eu3+. The binding energies of ZnO powders are 530.4
and 532.2 eV, and those of Zn0.99O:0.01Eu

3+ powders are
531.0 and 532.5 eV, indicating the presence of two kinds
of oxygen species. The peaks at 530.4 and 531.0 eV cor-
respond to the crystal lattice oxygen (O2−), and those
at 532.2 and 532.5 eV correspond to the chemisorbed
oxygen (hydroxyl species) [17]. In addition, the two in-
tense XPS peaks related to the Eu 3d are detected at
1165.0 eV (Eu 3d3/2) and 1135.5 eV (Eu 3d5/2) for the

Zn0.99O:0.01Eu
3+ powders (Fig. 2d). The energy di�er-

ence between the two Eu3+ peaks is found to be 29.5 eV,
which is a characteristic of a charge transfer from O 2p
to Eu 4f [18]. The peaks at 1155.2 and 1125.1 eV are
characteristic peaks of divalent Eu2+ and a weak peak at
1143.5 corresponds to multiplet.

The XRD patterns of the ZnO and Zn0.99O:0.01Eu
3+

powders synthesized at 150 ◦C followed by annealing at
800 ◦C are shown in Fig. 3. All the XRD patterns are
well matched with the JCPDS card No. 36-1451, corre-
sponding to the wurtzite crystal structure and P63mc
space group [9]. In the wurtzite crystal structure of
ZnO, Zn atoms occupy at (1/3, 2/3, 0) and (2/3, 1/3,
1/2) sites, and O atoms occupy half of tetrahedrally co-
ordinated sites at (1/3, 2/3, 3/8) and (2/3, 1/3, 7/8).
The atomic arrangement of Zn and O results in non-
centrosymmetric crystal and the ZnO consists of alter-
nating layers of tetrahydrally co-ordinated O2− and Zn2+

ions along the c-axis [19]. No signi�cant di�erence in
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Fig. 2. XPS spectra of the ZnO and Zn0.99O:0.01Eu
3+

powders synthesized at 250 ◦C: (a) survey, (b) Zn 2p, (c)
O 1s, and (d) Eu 3d.

the XRD patterns of as-synthesized and annealed ZnO
and Zn0.99O:0.01Eu

3+ powders is observed, indicating
that both the annealing and the incorporation of Eu2O3

do not a�ect the crystal structure of the ZnO. In addi-
tion, the XRD patterns of the ZnO and Zn0.99O:0.01Eu

3+

powders synthesized at 250 ◦C are quite similar to those
of the powders at 150 ◦C, as shown in Fig. 4. The crys-
tallite sizes (D) of the as-synthesized and annealed ZnO
and Zn0.99O:0.01Eu

3+ powders are calculated by using
the Scherrer formula [20]: D = (0.9λ)/(βcosθ), where
λ is the wavelength of radiation, θ is the angle of the
di�raction peak, and β is the full width at half maximum
of the di�raction peak (in rad). The calculated crystallite
sizes of the powders are given in Table I. The crystallite
sizes of annealed ZnO and Zn0.99O:0.01Eu

3+ powders are
larger than those of as-synthesized powders, and those of
as-synthesized and annealed Zn0.99O:0.01Eu

3+ powders
are larger than those of as-synthesized and annealed ZnO
powders.

TABLE I

Crystallite sizes [nm] of the as-synthesized and annealed
ZnO and Zn0.99O:0.01Eu

3+ powders

Synthesis As-synthesized Annealed

temperature [ ◦C] ZnO ZnO:0.01Eu3+ ZnO ZnO:0.01Eu3+

150 38.4 41.3 42.0 42.6

250 32.2 32.6 41.5 42.1

Figure 5 shows the excitation spectra, monitored
at a wavelength of 614 nm, for the annealed ZnO
and Zn0.99O:0.01Eu

3+ powders synthesized at 150 and
250 ◦C. The broad excitation band centered at 378 nm
may be due to the crystal defects, e.g., single-ionized
oxygen vacancies, of the ZnO [21]. In addition, the
sharp peaks are observed at 396, 418, 465, and 535 nm,

Fig. 3. XRD patterns of the (a) ZnO and
Zn0.99O:0.01Eu

3+ powders synthesized at 150 ◦C
and of the annealed (b) ZnO and Zn0.99O:0.01Eu

3+

powders synthesized at 150 ◦C.

which are attributed to the 7F0 →5 L6,
7F0 →5 D3,

7F0 →5 D2, and
7F0 →5 D1 transitions of Eu3+ ions,

respectively [22]. The intensity of the excitation peak at
465 nm for the annealed Zn0.99O:0.01Eu

3+ powders syn-
thesized at 250 ◦C is much stronger than that at 150 ◦C.
It is thus necessary to control the synthesis temperature
of Zn0.99O:0.01Eu

3+ powders for increase of the excita-
tion intensity.

The emission spectra of the annealed
Zn0.99O:0.01Eu

3+ powders synthesized at 150 and
250 ◦C upon 465 nm excitation are shown in Fig. 6.
The broad emission band below 575 nm, corresponding
to green emission, is attributed to the recombination
luminescence of single-ionized oxygen vacancies [23].
Strong emission peaks are detected at 580, 592, 612,
653, and 705 nm, which originate from the transition of
Eu3+ ions from the 5D0 excited state to the 7FJ (J = 0,
1, 2, 3, and 4) ground state, respectively [24, 25]. It is
observed that the emission peak at 612 nm (5D0 →7 F2),
corresponding to the red emission, is much stronger
than that at 592 nm (5D0 →7 F1), corresponding to
orange emission. This suggests that the Eu3+ ions are
located at a non-centrosymmetric environment in ZnO
lattice. Clearly, the emission intensity of the annealed
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Fig. 4. XRD patterns of the (a) ZnO and
Zn0.99O:0.01Eu

3+ powders synthesized at 250 ◦C
and of the annealed (b) ZnO and Zn0.99O:0.01Eu

3+

powders synthesized at 250 ◦C.

Fig. 5. Excitation spectra of the annealed (a) ZnO and
(b) Zn0.99O:0.01Eu

3+ powders synthesized at 150 ◦C
and of the annealed (c) ZnO and (d) Zn0.99O:0.01Eu

3+

powders synthesized at 250 ◦C.

Zn0.99O:0.01Eu
3+ powders synthesized at 250 ◦C is much

stronger than that at 150 ◦C because of its increased
powder size and improved crystallinity. This means
that the PL properties of annealed Zn0.99O:0.01Eu

3+

powders can be e�ectively improved by controlling the
synthesis temperature.

Fig. 6. Emission spectra of the annealed
Zn0.99O:0.01Eu

3+ powders synthesized at (a) 150 ◦C
and (b) 250 ◦C upon 465 nm excitation.

4. Conclusions

The hydrothermal temperature a�ected sig-
ni�cantly the size and morphology of the ZnO
and Zn0.99O:0.01Eu

3+ powders. The ZnO and
Zn0.99O:0.01Eu

3+ powders synthesized at 150 and
250 ◦C showed rod- and �ower-like morphologies, re-
spectively. The as-synthesized and annealed ZnO and
Zn0.99O:0.01Eu

3+ powders crystallized in the wurtzite
crystal structure and P63mc space group. The crys-
tallite size of as-synthesized ZnO powders increased
by annealing and doping the Eu3+. The XPS spectra
of as-synthesized Zn0.99O:0.01Eu

3+ powders exhibited
the presence of the constituent elements, Zn, Eu, and
O. Sharp excitation peaks were observed at 396, 416,
465, and 536 nm, which correspond to the 7F0 →5 L6,
7F0 →5 D3,

7F0 →5 D2, and
7F0 →5 D1 transitions

of Eu3+ ions, respectively. Strong emission peaks were
detected at 580, 592, 612, 652, and 708 nm, which
originate from the 5D0 →7 FJ (J = 0�4) transitions
of Eu3+ ions. The annealed Zn0.99O:0.01Eu

3+ powders
synthesized at 250 ◦C showed much stronger emission
intensity than that at 150 ◦C because of its increased
powder size and improved crystallinity.
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