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Magnetic and dielectric properties of hexagonal ferrites important for applications in microwave absorbers are
strongly determined by the processing conditions. We studied dielectric and magnetic response of Sr1�xNdxFe12O19

(x � 0, 0.03, 0.05, 0.07, 0.09) solid solutions obtained by coprecipitation method. The structure of the samples
was controlled by X-ray diffraction and scanning electron microscope images revealed that the powder is a mixture
of small nanograins and crystallites of 500 nm–1 µm in size. Nd3� doping was found to result in an increase
in the coercive field which we would like to relate to the domain wall pinning. The doping-induced changes are
monotonous with x up to 0.07. The observed dispersion of permittivity was found to be correlated with the
frequency behaviour of electric conductivity of the samples.
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1. Introduction

M-type hexagonal ferrites with large magnetocrys-
talline anisotropy and high electric resistivity are es-
sential for various applications, among others in high
frequency devices [1–3]. Rare earth (RE) substitution
A1�x(RE)xFe12O19 (A = Ba, Sr, Pb) has been used to
control the spin-orbit interaction and to modify the mag-
netic properties [4–9]. Solubility of the RE ions was how-
ever, found to be limited to x ¤ 0.1 due to the shape
of electronic charge distribution and its surrounding in
the crystal [5]. M-type hexaferrites crystallize in hexag-
onal structure with P63{mmc space group (No 194) and
Z � 2. Their magnetic properties are determined by
24 Fe3� ions distributed in the lattice in sites of tetra-
hedral symmetry (4f1 Wyckoff positions), of octahedral
symmetry (Z � 2, 2a, 4f2) and in bipyramidal sites
(2b) [3]. According to the Gorther model magnetic mo-
ment of the unit cell amounts to 40 µB and results from
the superposition of magnetic moments (5 µBq of 16 Fe3�
ions parallel to the hexagonal axis (Z � 2, 2b, 2a) and
8 moments of (4f1, 4f2) Fe3� aligned antiparallel to the
c-axis [10]. Nanosized materials are very promising to in-
crease the performance of various devices however, their
magnetic properties are highly sensitive to microstruc-
ture (size and shape) of the nanoparticles [11, 12]. As
only few papers [4, 8, 9] are devoted to the effect of
Nd3� doping on magnetic properties of SrM hexaferrite
nanoparticles we proceeded to study magnetic and dielec-
tric behavior of Sr1�xNdxFe12O19 nanopowder obtained
by chemical coprecipitation.
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2. Experimental

Sr1�xNdxFe12O19 with x � 0, 0.03, 0.05, 0.07 and 0.09
were prepared by coprecipitation method from following
precursors: Sr(NO3q2, Fe(NO3q3 � 9H2O, HNO3, Nd2O3,
NH3, and H2C2O4 � 2H2O. 20% NH4OH was added to
achieve pH = 7 and precipitate the metal solution. The
precipitate was washed several times with deionized wa-
ter and dried powders were sintered for 24 h at 400 �C
and calcined at 1200 �C for 4 h in the air.

The structure of the samples was controlled by X-
ray diffraction (X’Pert PANalytical, CuKαq in Bragg-
Brentano geometry and refined by Rietveld method using
a High Score Plus package. The morphology was stud-
ied by scanning electron microscopy FEI Nova NanoSEM
with incident electron energy of 5 keV.

Physical Property Measurement System (PPMS,
Quantum Design Ltd) with vibrating sample magne-
tometer probe was used for magnetic measurements in
the temperature range 4–300 K. Dielectric response and
ac conductivity of the samples (powder pressed at 0.6
GPa into pellets with Au-evaporated electrodes) were
studied using an Alpha-A High Performance Frequency
Analyzer (Novocontrol GmbH) in the frequency range
10 mHz–1 MHz and up to 1 GHz using an E4991A RF
Impedance/Material Analyzer Agilent.

3. Results and discussion

As shown in Fig.1 the Nd-doped SrM samples con-
tain a single phase only, whereas a trace of α-Fe2O3 par-
asite (marked by arrows) is apparent in the undoped
SrFe12O19 sample. Nd3� with ionic radius RNd �
98 pm   RSr � 118 pm [13] induces also a small but
continuous decrease in the lattice parameters. The de-
crease in a and c amounts to 0.2% and 0.5%, respectively
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Fig. 1. Room temperature XRD pattern of
Sr1�xNdxFe12O19.

for sample with x � 0.09 which is in an agreement with
the literature data [5].

SEM images (not shown here) have revealed that the
Sr1�xNdxFe12O19 powders are a mixture of small grains
(of average size 50–100 nm) and crystallites with mean
sizes from � 500 nm to � 1 µm. The mean size of
the crystallites decreases sligthly with Nd doping but the
powder remains still bimodal.

Magnetic properties of hexaferrites are related to the
ferric ions which coupled with O�2 form a colinear mag-
netic order. Figure 2 shows examples of hysteresis loop,
which are characteristic of ferro/ferrimagnetic order. De-
tailed studies show that the loops of Nd-doped samples
exhibit curling modes (see the inset) due to an incoher-
ent magnetization reversal [11, 12] in the crystallites with
sizes greater than the crictical particle size dcr of a single
domain state (dcr � 650 nm for SrM [14]).

Fig. 2. Magnetic hysteresis loops of Sr1�xNdxFe12O19

at 10, 150, 200, 250, and 300 K; dH{dt � 50 Oe/s.

One can observe that the coercive field of
Sr1�xNdxFe12O19 increases monotoneously with the
concentration of the dopant up to x � 0.07 (Fig. 3). The
effect we would like to relate to the domain wall pinning.
The admixture of Nd3� ions (exhibiting magnetic
moment of 3.5 µBq results also in a small improvement
the effective magnetic moment: the magnetization value

M2 T in field of 2 T increases by � 3�4% at 300 K.
Figure 4 shows temperature variation in the Hc and
M2 T for pure and Nd-doped SrM hexaferrites. The
coercivity of doped samples is found to increase with
rising temperature, similarly to the behaviour observed
for pure M-type pure hexaferrites. The decrease in the
magnetization value M2 T at higher temperatures is due
the Bloch law M � T 3{2.

Fig. 3. Room temperature coercivity Hc and magneti-
zation M2 T of Sr1�xNdxFe12O19 versus x.

Fig. 4. Temperature variation of coercive field Hc and
magnetization M2 T for Sr1�xNdxFe12O19.

Correlation between frequency behavior of electric con-
ductivity and permittivity of the ferrites has been related
by Koops to the heterogeneity of the ceramics consisting
of highly conducting grains separated by grain bound-
aries with high electric resistivity [15]. Iwauchi has shown
that electron hopping between ferric and ferrous ions
Fe3��e� Ñ Fe2� is responsible for the conductivity [16].
In the case of M-type hexaferrites electron hopping be-
tween Fe4–Fe4 (4f2q and Fe5–Fe5 (Z � 2) ions in the
octahedral sites was reported to be responsible for elec-
tric transport [17]. Figure 5 shows examples of frequency
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Fig. 5. Frequency dependence of permittivity ε1 and
electric conductivity σ1 of Sr1�xNdxFe12O19 at room
temperature.

dependences of permittivity and electric conductivity of
Sr1�xNdxFe12O19.

One can observe that for x ¥ 0.05 the permittivity ε1
decreases rapidly at low frequencies and reaches a con-
stant value at fa � 10 kHz, whereas at this frequency the
conductivity starts to increase (being below fa rather low
and frequency independent). Thus the low-frequency be-
havior of ε1 is determined by space charge polarization
piled up at poorly conducting grain boundaries and the
contribution from insulator-electrode contact [18]. With
increasing frequency of externally applied electric field
electrons hopping between the localized ferric and fer-
rous cations cannot follow the alternating field and the
permittivity decreases reaching a constant value. The
high frequency permittivity value can be considered as
characteristic of the grain interior of our hexaferrite ce-
ramics.

Fig. 6. Electric conductivity of Sr1�xNdxFe12O19 ver-
sus frequency measured at constant temperature in the
range from 300 K to 500 K with a step of 25 K.

The effect of thermal activation of electron hopping,
apparent in frequency dependences of electric conductiv-
ity at higher temperatures is shown in Fig. 6. One can
observe that the space charge polarization persists also
at high frequencies. Nd-doping was found to increase
the conductivity of the hexaferrites and Fig. 7 shows the
dc conductivity at 300 and 500 K as dependent on the
concentration of the dopant.

Fig. 7. dc electric conductivities of Sr1�xNdxFe12O19

at 300 K and at 500 K as dependent on the concentra-
tion xof Nd3� ions.

4. Conclusions

Sr1�xNdxFe12O19 with 0 ¤ x ¤ 0.09 obtained by pre-
cipitation method is a single phase compound and can
be considered as consisting of a mixture of single mag-
netic domain grains and multidomain crystallites. The
bimodal morphology is apparent in the hysteresis loop
as curling modes and the doping-induced increase in the
coercivity is related to the domain wall pinning effect.
Nd3� ions substituting divalent Sr2� ions in the hexafer-
rite lattice with magnetic moment of 3.5 µB result also in
an increase of the electric conductivity and space charge
polarization due to formation additional oxygen vacan-
cies and moreover, are responsible for the small increase
of the effective magnetic moment. The modification of
magnetic and dielectric properties induced by Nd3� dop-
ing of SrFe12O19 hexagonal ferrite reaches maximum for
the doping level of 0.05-0.07%.
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