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We study the Josephson effect in graphene based junctions where superconductivity in graphene is induced
by the proximity effect from external substrate materials. The electronic properties of the junction is described
by the Dirac-Bogoliubov-de-Gennes equations. We consider the junction consisting of two superconductors with
different pairing potentials. Using appropriate boundary conditions imposed on the normal region-superconductors
interfaces, we calculated the Andreev bound state energy, in the ballistic limit, taking into account two types of
reflections namely the retro and specular Andreev reflections.
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1. Introduction

The unusual electronic and spintronic processes in
graphene have attracted an intense interest in experimen-
tal and theoretical solid state physics [1–4] The fermionic
charge carriers in graphene systems behave as mass-
less chiral relativistic particles, symmetrically located be-
tween the valence and conduction bands and forming ap-
propriate conical band forms. The conical conduction
band touches the conical valence band at the six Dirac
points which are located at the edges of the hexagonal
Brillouin zone. Therefore, graphene belongs to gapless
semiconductors with a Dirac-like dispersion of massless
elementary excitations. Natural graphene does not ex-
hibit any superconducting or ferromagnetic properties.
However, long range orders, such as superconductivity
or magnetism, can be induced in graphene layer via the
proximity effects due to the interactions of Dirac fermions
with superconducting [5] or ferromagnetic substracts [6].
Graphene-based junctions in which normal or ferromag-
net regions are connected with a superconductor material
have many features which are interesting for application
in spintronics as well as intriguing for research in funda-
mental physics.

In this paper we study the Josephson effect in
graphene based junctions [7–13] where superconduc-
tivity in graphene is induced by the proximity effect
from two different types of superconducting external
sheets. The junction considered is described by the
Dirac-Bogoliubov-de-Gennes equation with appropriate
boundary conditions imposed on the normal metal-
superconductor (NS) interface.

In the first step of our investigations we calculate the
Andreev bound states in the normal region [10, 14, 15]
taking into account two types of reflections with the
electron-hole conversion, namely the specular Andreev
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and retro Andreev reflections [16]. The Andreev specular
(interband) reflection, characteristic feature of graphene,
occurs when a conduction electron is converted into a
hole in the valence band, while the retro (intraband) An-
dreev reflection induces intraband process of conversion
an electron into a hole. The Andreev retro-reflection
appears in conventional materials where the Fermi en-
ergy is much greater than a superconducting gap ∆. The
specular Andreev reflection can take place only when the
Fermi energy is less than a superconducting order param-
eter. This condition can be easily reached in undoped
graphene.

Recently, the Josephson effect in graphene- based junc-
tions was studied by many authors e.g. [3–7, 12, 13]. In
this paper, we calculate the Andreev bound state energy
in the ballistic limit [6, 10, 12, 13] for the graphene-based
junctions in which the induced superconductivity (SLG,
SRG)is created by two different substrate superconduct-
ing materials (SL, SR) (Fig. 1).

2. Model and calculations

We discuss the Josephson effect in a graphene-based
junction SLG{NG{SRG consisting of two superconduct-
ing graphene layers (SLG and SRG) (see Fig. 1) and a
normal graphene layer (NG). The thickness L of the
normal region is equal L and the width of the Josephson
junction along the y axis is W . The normal region is
modeled by a barrier potential which can be created by
using either the electric field effect or local chemical dop-
ing [1]. We consider the short-junction limit where the
values of the thickness should be smaller than the super-
conducting coherence length given by ξ � ~vF{π∆ [17].
A typical conventional superconductor has a gap of order
of 1mV, and thus ξ is order of 1000nm. Similar values
are assumed for the proximity induced superconductor in
graphene. We assume that L ! ξ, 2π{kF (kF — the Fermi
wave vector). The width W of the junction is assumed
to be the largest length scale in our model.

The superconductivity in graphene are induced due to
the proximity effects by a superconducting material, de-
posited on the top of the junction. For simplicity, we
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Fig. 1. The schematic graphene-based junction SLG :
NG : SRG. SL and SR stand for left and right substrate
superconducting materials, respectively. N is a non-
superconducting substrate.

consider the s-wave superconductors only. We analyze
the behavior of the different scattering probabilities. In
particular, we have concentrated on dependence of the
Andreev bound state in the normal-superconductor inter-
face on the phase difference between the superconductors.
In our analysis we use the Dirac-Bogolubov-de Gennes
(DBdG) equations [16] in the following form�

Hασ � EF1̂ ∆prq

∆:prq �rHασ � EF1̂s

�
Ψα � EΨα, (1)

where Ψα � pΨAασ,ΨBασ,Ψ
�
Aα1σ,Ψ

�
Bα1σq

T, stands for
four-component wave function and T is the transpose;
The subscripts have the following meaning: A and B
denote the two sublattices of graphene while αpα1q in-
dicates the valley KpK 1q in the Brillouin zone. Index
σ � 1pÒq denotes the spin-up electron and the spin-down
hole, whereas σ � �1pÓq labels the spin-down electron
and the spin-up hole. The quasiparticle energy E is mea-
sured from the Fermi energy EF, and around each of the
Dirac points, low energy electrons and holes have lin-
ear, Dirac-like, dispersion. Thus, we get the conical-like
conduction and valence bands which touch each other at
the Dirac points. This is the origin of a graphene based
gapless semiconductor with a relativistic-like dispersion
relation. We can easily extend our model for the situation
when the normal region is replaced by the ferromagnetic
one. Then we can adopt the Stoner model with the ex-
change fields hpxq � h0 for x   0 and x ¡ �L.

The single-particle Hamiltonian Hασ for K valley has
the form Hασ � � i~vFrσxBx � σyBys � Upxq � σhpxq,
where Upxq is the electrostatic potential which can be
adjusted via a gate voltage or doping. We assume Upxq �
U0 for x   0 and x ¡ �L.

The wave function, describing the quasiparticle propa-
gation across the junction, is obtained from DBdG equa-
tions. The solution of Eq.(1), for all regions of the junc-
tion and for the injection of an electron with the energy
E and the angle of incidence Θe, can be written in three

following forms:
in the left superconducting region (x   �L):

ΨSLGpxq �

reLru
e
L, u

e
L e

i pπ�Θeq, veL e
� iφ1 , veL e

i pπ�Θe�φ1qsT

�e� iqeL cosΘex

�rhLrv
h
L, v

h
L e

iΘh , uhL e
� iφ1 , uhL e

i pΘh�φ1qsT

�e iq
h
L cosΘhx; (2)

in the normal graphene region (�L   x   0):
ΨNGpxq � ar1, e iΘ , 0, 0sT e ipe cosΘx

�br1,�e� iΘ , 0, 0sT e� ipe cosΘx

�cr0, 0, 1, e� iΘAsT e� iph cosΘAx

�dr0, 0, 1,�e iΘAsT e iph cosΘAx; (3)
in the right superconducting region (x ¡ 0):

ΨSRGpxq �

reRru
e
R, u

e
R e

i pΘeq, veR e
� iφ2 , veR e

i pΘe�φ2qsT

�e iq
e
R cosΘex

�rhRrv
h
L, v

h
L e

i pπ�Θhq, uhR e
� iφ2 , uhR e

i pπ�Θh�φ2qsT

�e� iqhR cosΘhx, (4)
where

pephqσ � pE � p�qEF � σhq{~vF,

q
ephq
LpRq � pESF � p�q

b
E2 �∆2

LpRqq{~vF;

u and v are the BCS coherence factors given by:

u
ephq
LpRq �

c
1
2 p1�

b
E2� | ∆LpRqpΘ�p�qq |2{Eq, vephqLpRq �c

1
2 p1�

b
E2� | ∆LpRqpΘ�p�qq |2{Eq, and Φ � φ2 � φ1

is the superconducting phase difference between the left
and right superconducting regions. These phases are as-
sociated with the broken Up1q gauge symmetry in the
superconducting states. The angles ΘA, Θe, Θh are
related to the angle of incidence Θ and can be deter-
mined from the assumed momentum conservation in the
y direction where the system is translationally invariant:
q iLpRq sinΘi � pe sinΘ i � e, h, ph sinΘA � pe sinΘ and
pe � E � EF, ph � E � EF.

From the conservation of momentum, we find a critical
incidence angle Θc, which is defined as that for which the
angle of Andreev reflection ΘA � π{2. Consequently, the
critical angle for the graphene based junction is given by
the equation:

Θc � arcsin
E � EF

E � EF
(5)

For angles greater than Θc, the wave functions describ-
ing the reflection processes become evanescent, and thus,
these processes do not contribute to any charge transport.
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The probability amplitudes, for the all transport pro-
cesses in graphene-based junctions, are determined from
the appropriate boundary conditions, imposing only con-
tinuity of the wave functions at all the interfaces:

ΨNGpx � �Lq � ΨSLGpx � �Lq

ΨSRGpx � 0q � ΨNGpx � 0q (6)
The first stage of our investigation is to calculate energy
of the Andreev bound state which determines the Joseph-
son current. From the boundary conditions (see Eq.(6))
we obtain a set of 8 linear equations. The condition for
non-zero solutions leads to the Andreev bound state en-
ergies EpΦq. In the numerical calculations we assume the
width junction limit (W ¡¡ L) and we neglected a mag-
netic order for �L   x   0. We also assume that there
is no Fermi level mismatch. It means the same value of
the Fermi level in the normal and superconducting re-
gions (EF � ESF ). The last assumption yields only one
Andreev bound state energy for each value of the phase
difference Φ (Fig. 2). The Josephson current can be ob-
tained from the following expression [14, 17, 18]:

IpΦq �
4e

~

» π{2
�π{2

dΘ cosΘ
dEpΦq

dΦ
fpEpΦq{pkBT qq, (7)

where the factor 4 accounts for the twofold spin and val-
ley degeneracies.
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Fig. 2. Andreev bound state energy in 1{?∆L∆R

units vs. phase difference divided by π.

3. Final remarks

In this paper we consider the Josephson junction where
superconductivity in graphene is induced by two differ-
ent superconducting substrates. The charge transport in
the graphene-based Josephson junctions is determined by
the Andreev reflection processes. For junctions consist-
ing of two different superconducting materials (SL and
SR) both the magnitude and period of oscillations of the
Andreev bound energy, as a function of the phase differ-
ence Φ, strongly depends on

a
p∆Lq∆R. The following

important questions should be answered in our further
studies:

1)How to distinguish the contributions to the Josephson
current coming from the retro and specular Andreev re-
flections respectively, for mid-gap incident energies?
2)How the chiral nature of the quasiparticle influences
the Josephson supercurrent in superconducting graphene
based junctions?

In our preliminary calculations we consider only con-
ventional s-wave superconductivity. It should be ex-
pected, however, that the oscillating nature of the An-
dreev bound states, and thus the oscillating character of
the induced Josephson current in graphene, will depend
not only on the magnitude of the gap functions and the
phase difference, but on the anisotropy of the order pa-
rameter in the case of unconventional pairing supercon-
ducting graphene structures.
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