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Within a Monte Carlo technique we examine critical properties of diluted bulk magnetic semiconductor
(Ga,Mn)As modeled by a strongly diluted ferromagnetic Heisenberg spin- 5

2
system on a face centered cubic lat-

tice. We assumed that 5% of Ga atoms is substituted by Mn atoms and the interaction between them is of the
RKKY-type. The considered system is randomly quenched and a double average was performed: firstly, over the
Boltzmann probability distribution and secondly - over 2048 configurations related to the quenched disorder. We
estimated the critical temperature: Tc � 97� 6 K, which is in agreement with the experiment.
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Gallium manganese arsenide, (Ga,Mn)As, is a diluted
magnetic semiconductor with a zinc-blende crystal struc-
ture with two interpenetrating FCC lattices (Ga and As).
In one of them several percent of Ga is substituted, prob-
ably randomly, by Mn. This leads to the strong quenched
site disorder. The compound is still focusing a lot of
theoretical and experimental attention mainly due to its
potential spintronic applications (i.e., a possible manip-
ulation the spin and the charge carrier degrees of free-
dom at the same time). The effects of quenched dis-
order on critical properties of such systems have been
the subject of intense experimental and theoretical inter-
est for a long time. Generally, the critical temperature
of bulk (Ga,Mn)As depends on the concentration of Mn
atoms, but details of this dependence are far from being
known. Let us point to the recent [1] experimental an-
swers, e.g., for the Mn concentration of 12% the value of
TC � 183.5 K has been obtain for samples from rema-
nent magnetization Kouvel-Fisher plots. On the other
hand, using massive Monte Carlo simulations the criti-
cal properties of strongly disordered (but above the per-
colation threshold) Heisenberg systems (being model of
(GaMn)As) on simple cubic lattice were examined [2].
Critical temperatures and critical exponents were esti-
mated and it was shown, that Harris criterion is fulfilled.

In this paper we would like to elucidate the critical
properties of strongly (the concentration of Mn atoms
is below the percolation threshold) diluted (Ga,Mn)As.
These systems are usually examined theoretically using
a classical Heisenberg model,

H � �
¸
i,j

JprijqSiSj . (1)

Jprijq stands for the hole-mediated, indirect exchange
coupling between Mn moments separated by a distance
rij on FCC lattice,

Jprq � J0 e
�r{lr�4

�
sinp2κrq � 2κr cosp2κrq

	
. (2)

κ is the Fermi wave number κ � p 32π
2 ncq

1{3, nc stands
for the hole density and l is the damping scale.

Many authors have estimated exchange interactions
entering to Eq. (2). Sato [3], using KKR method cal-
culate (Ga,Mn)As electronic structure and subsequently
embedding Mn impurities in CPA medium was able to to
find the Jprq, see Fig. 1 (black squares). Fitting his data
to the phenomenological formula given by Eq. (2) one can
estimate the period of RKKY oscillations, � π{κ � 1.37
(cf. discussion in Ref. [4]).
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Fig. 1. Exchange interaction Jprq in (Ga,Mn)As with
5% of Mn concentration versus distance, as calculated
by Sato [3] (black squares). The blue line is a result of
fitting Sato data to Eq. (2).

To obtain critical properties we have used an approach
based on finite-size scaling hypothesis and analyzed the
scaling of two quantities, which do not depend on the
scale at which we look at the system: reduced correla-
tion length ξ

L and Binder cumulant U2. As a test of this
approach we have estimated the critical temperature and
critical exponents ν and β for classical FCC Heisenberg
ferromagnet nearest neighbor interactions only. Firstly,
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let us recall the definition of the correlation length ξ using
the structure factors for two wave vectors: q � r0, 0, 0s
and q1 � r 2πL , 0, 0s

ξ �
1

|q1|

d
Spqq

Spq1q
� 1, (3)

and the structure factor is given by

Spqq �
¸
r

cospq � rqCprq, (4)

with Cprq being the correction function at the dis-
tance |r|. Subsequently, using the Metropolis algorithm
(200000 MC steps/spin, 10000 steps/spin to reach equi-
librium) we have calculated ξpT q for three FCC systems:
L � 10, 12, 14 consisting of 4000, 6912 and 10976 spins,
respectively, with periodic boundary conditions.
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Fig. 2. Temperature dependence of the three correla-
tion lengths normalized by the system size L in three
classical Heisenberg FCC systems before rescaling (left)
and after rescaling (right). t stands for the reduced
temperature, Tc�T

T
. The scaling collapse leads to the

optimal values of Tc and exponent ν. Statistical errors
are comparable with points sizes.

Since one assumes that a quantity which is singular at
Tc in the thermodynamic limit, scales with the system
size L close to Tc as a power of L multiplied by a non-
singular function of the ratio ξ

L , one has

ξ � LgptL
1
ν q, (5)

where g stands for a scaling function. Thus, an attempt
to plot ξ vs tL

1
ν with a proper values of Tc and ν should

result in a scaling collapse - this is shown in Fig. 2 (right).
Besides examining the scaling of ξ

L there exists other
dimensionless size-independent quantity at the critical
point which can be used to extract critical properties
of the system under consideration, namely the Binder U2

cumulant. In the case of classical Heisenberg system (or
a vector order parameter) it is defined in the following
way:

U2 �
5

2

�
1�

3

5

xm2y

x|m|y2

	
. (6)

During the same MC run we have calculated xm2y and
x|m|y. The scaling of U2 cumulant enables to extract a
critical exponent ν for the second time from the scaling
of the function h

U2 � hptL
1
ν q. (7)

This is shown on the left side of Fig. 3 — before rescaling
and on the right side - after rescaling.
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Fig. 3. The cumulant U2 before (left) and after rescal-
ing (right). As expected from the finite size scaling
ansatz (Eq. (7)) the data for different system sizes
collapse on a single curve for Tc � 3.177 � 0.002 and
ν � 0.712� 0.002 (right).

It is also possible to estimate the second independent
exponent β from the following scaling of the magnetiza-
tion

mpt, Lq � L�
β
ν fptL

1
ν q, (8)

with f being some scaling function. Plotting mpt, LqL
β
ν

versus tL
1
ν for different system sizes leads to the scaling

collapse for β
ν � 0.518 � 0.001, see Fig. 4. Our numeri-

cal values should be compared [5, 6] with Tc � 3.1771�
0.0001, ν � 0.7112� 0.0005 and β � 0.3689� 0.0003.
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Fig. 4. The magnetizationmpT q before (left) and after
rescaling (right). As expected from the finite size scaling
ansatz (Eq. (8)), the data for different system sizes fall
onto a single curve for Tc � 3.177 � 0.002 and β

ν
�

0.518� 0.001 (right).

Let us now move to a more complicated structure,
namely to a strongly diluted classical Heisenberg FCC
system with long-range RKKY-type interactions, given
by Eq. (2). Suppose that a concentration of magnetic
Mn atoms is equal to 0.05 which is far below the perco-
lation threshold p0 for the nearest neighbor Heisenberg
system (p0 � 0.20 for the FCC lattice).

The system is a randomly quenched one and therefore
one has to take a double average: for fixed configuration
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of magnetic atoms, see Fig. 5, one computes the ther-
mal average within the Metropolis importance sampling
and subsequently, the average over disorder is realized by
simple sampling.

Fig. 5. One of the possible configurations of magnetic
atoms chosen from 63 �4 atoms (grey) in FCC structure.
Only 5% of them are magnetic ones (blue). Averaging
over such configurations of magnetic atoms one should
take into account � 104 of them.

One could ask a basic question how large should be
the sample which will be used for averaging over con-
figurations. Samples being examined in typical exper-
iments amount a very large number of degrees of free-
dom (� 1023) and the observable quantities are self-
averaging [7]. the situation is quite different in the case
of a finite size systems and finite size scaling analysis.
The main problem is that by considering systems of fi-
nite linear dimension L at the critical temperature Tc
one encounters fluctuations by passing from one config-
uration to another which cause a significant fluctuation
of the pseudo-critical temperature Tc. This implies that
one has to average over � 104 configurations in order to
get the relative error of the disorder average at Tc less
than 1% [7].
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Fig. 6. The magnetization mpT q for diluted systems
before (left) and after rescaling (right). The data for
different system sizes fall onto a single curve for Tc �
0.095 � 0.006 and β

ν
� 0.370 � 0.050 (right). The con-

centration of Mn atoms amounts 5%, interactions [3] are
given in Fig. 1, black squares.

Let us summarize the examination of the critical prop-
erties of (Ga,Mn)As with 5% Mn atoms and interactions
between them presented in Fig. 1. The average values of
mpT q and U2pT q were calculated for 2048 configurations.
It was not possible to find a proper scaling dependencies
mpT q - statistical errors resulting from fluctuations were
much bigger than differences between m10pT q, m12pT q
and m14pT q. However, it was possible to find a proper
scaling for correlation length U2pT q. The effect (crossing
in Fig. 6 (left)) is rather subtle but clearly marked and
it is definitely beyond the statistical error. Taking into
account that 1 Ry = 158 K and S � 5

2 for Mn, one can
estimate Tc for (Ga,Mn)As containing of 5% Mn atoms

as follows: Tc � 158 �
�

5
2

	2
� 0.095 � 97 � 6 K which is

in agreement with experiment [1]. Note that both types
of data, presented in Fig. 1 lead to the same (within a
statistical error) value of Tc. A high a value of the expo-
nent ν � 2.71may indicate that the considered transition
belongs to a universality class different from that of the
3D Heisenberg. Possible long-range RKKY interactions
and strong site quenched dilution might be the cause of
this difference. Similar behavior was observed [8] in case
Heisenberg spin glasses. We leave this issue open for fu-
ture investigation.
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