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Are there Optical Magnons?
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Optical magnons should occur in magnets containing two in-equivalent magnetic species only. However,
Heisenberg interactions between in-equivalent magnetic atoms can be expected to be weak. This is because free
exchange of electrons between chemically different magnetic atoms appears not generally possible. To the best of our
knowledge optical magnons have never been identified unambiguously experimentally. Confusion is provided by the
fact that two magnon branches commonly occur in antiferromagnets with ferromagnetically ordered crystallographic
planes and opposite spin orientations from plane to plane. This applies to MnO, EuTe, CoCl2, Fe2O3, K2FeF4.
Associated with the ferromagnetic planes is a particular low-energy magnon branch. The high-energy magnon
branch is the antiferromagnetic branch and not an optical magnon. In Fe3O4 (magnetite), weak interactions
between the Fe2� moments and the Fe3� moments are evidenced by the fact that the order parameters of the FeO
and of the Fe2O3 subsystem have different temperature dependencies. The observed two magnon branches can be
attributed to the Fe2O3 and to the FeO subsystem, respectively. This applies equally to the two observed magnon
branches in mixed crystals such as Rb2Mn0.5Ni0.5F4, KCo0.71Mn0.29F3 or Mn0.3Co0.7F2 that can be understood
as modified dispersions of the constituent materials.
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1. Introduction

Magnons are not the relevant excitations to control
spin dynamics. This reveals, for instance, from the fact
that magnon dispersions are independent of spin quan-
tum number but thermal decrease of the magnetic order
parameter is different in magnets with integer and half-
integer spin [1]. Moreover, thermal decrease of the mag-
netic order parameter is universal, that is, independent of
spin structure while magnon dispersions depend on spin
structure. As a consequence, quite opposite to magnons,
the relevant excitation spectrum that is responsible for
spin dynamics must depend on spin quantum number but
is independent of spin structure.

As was concluded by renormalization group theory [2],
spin dynamics is controlled by a boson field. In Ref. [3]
it was shown, that the field quanta are essentially mag-
netic dipole radiation emitted by the precessing spins.
The field bosons propagate ballistic, independent of the
atomistic background. This is the origin of universality of
the boson controlled thermodynamic observables. Since
integer and half-integer spins precess differently, the gen-
erated field quanta are correspondingly different, and the
associated boson fields have different energy densities.
Thermal decrease of the order parameter is controlled
by the heat capacity of the boson field and therefore is
universal but depends on whether the spin is integer or
half-integer [3].

Magnons and boson fields are not completely indepen-
dent excitations but can interact. This modifies magnon
dispersions, mainly in the low q-range [1, 4]. It is ob-
served that due to attractive interactions between the
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dispersion relations of magnons and bosons, magnons can
assume the dispersion of the bosons at small q-values.
This opens the possibility to evaluate the dispersions of
the field bosons from the known magnon dispersions [4].
Since the bosons propagate ballistic, their dispersion is a
simple power function of wave-vector over a large energy
and q-range [1]. The exponent x of the qx power func-
tion is characteristic for the dimensionality of the boson
field, and is independent of spin structure but depends on
whether the spin is integer or half-integer [1, 4]. Appear-
ance of the qx term is always associated with a magnon
gap. Magnon dispersions at larger q-values better con-
form to spin wave theory in that they are independent of
spin quantum number and depend on spin structure. As
a consequence, at small and at large q-values, magnons
have analytically different wave-vector dependence. The
two functions of wave vector have different temperature
dependencies [1, 4].

2. Experimental details

An optical magnon branch should result from inter-
actions between chemically different magnetic atoms.
Confusion is provided by the fact that two magnon
branches can occur in antiferromagnets with ferromag-
netically ordered crystallo-graphic planes and opposite
spin orientations from plane to plane [5]. This applies to
EuTe [5], K2FeF4 [6], MnO [7], CoCl2, CoBr2 [8] and to
Fe2O3 [9]. Figure 1 shows magnon energies of the low q-
range of the lamellar antiferromagnet K2FeF4 [6]. As the
large magnon gaps indicate, magnon-boson interaction is
strong. As a consequence, magnons adapt over a large
q-range to the q1.25 dispersion of the two-dimensional bo-
son field in magnets with integer spin (S � 2) [1]. The
2D boson field is consistent with spin orientations within
quadratic basal plane [1, 6]. The high-energy magnon
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branch hast to be identified as antiferromagnetic branch
while the low energy branch as ferromagnetic branch.
This becomes evident from the different field dependen-
cies of the two branches (Fig. 2).

Fig. 1. Magnon dispersions within quadratic basal
plane of K2FeF4 showing low-energy ferromagnetic
branch and high-energy antiferromagnetic branch. Both
branches have adapted to the q1.25 dispersion of the two-
dimensional boson field in magnets with integer spin
(S � 2) [6].

Fig. 2. Field dependence of the gap energies of the
antiferromagnetic (filled points) and of the ferromag-
netic (circles) magnon branch of CoCl2 at T � 4.2 K
(TN � 24.7 K) measured by AFMR [8]. The energy of
the antiferromagnetic branch decreases as a function of
field, the energy of the ferromagnetic branch increases
as a function of field.

Fig. 3. Order parameters of the FeO (S � 2, circles)
and of the Fe2O3 (S � 5{2, dots) subsystem in Fe3O4

sampled individually by (220) and by (222) magnetic
scattering intensity, respectively, as a function of re-
duced temperature [12]. The different temperature de-
pendencies indicate decoupling of the two subsystems.
The boson fields that control thermal decrease of the or-
der parameter have vector character and have different
dimensionalities along different crystallographic direc-
tions.

Fig. 4. The two magnon branches (along a-axis) of
Rb2Mn0.5Ni0.5F4 can be attributed to the Rb2NiF4

(TN � 94.5 K) and to the Rb2MnF4 (TN � 38.4 K)
subsystem [14]. The pure materials have gap ener-
gies of 4.28 meV (Rb2NiF4q and 0.63 meV (Rb2MnF4q.
The enhanced magnon gap energies are indicative of in-
creased magnon-boson interactions. Magnon dispersion
of the Rb2MnF4 branch displays analytical crossover
from power function to sine function of wave vector (see
text).

For EuTe [10], for CoCl2 and for CoBr2 [8] measure-
ments of the two magnon gap energies as a function of a
magnetic field are available. Figure 2 shows AFMR data
of the two gap energies of CoCl2 [8]. In CoCl2 the ferro-
magnetic planes are stacked antiferromagnetically along
hexagonal c-axis [11]. The field dependence of the high-
energy gap has much similarity with the critical field of
an antiferromagnet and characterizes the upper magnon
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Fig. 5. A qualitatively similar result as for
Rb2Mn0.5Ni0.5F4 (Fig. 4) is obtained for
Mn0.3Co0.7F2 [16]. Upper branch can be attributed
to CoF2, lower branch to MnF2. However, absolute
magnon energies are considerable different compared to
the pure materials. In pure MnF2 magnon energies are
in the range 0.266-1.64 THz and in pure CoF2 in the
range 1.13-1.94 THz [16].

branch as antiferromagnetic branch. The low energy gap
increases unlimited with field and therefore has to be
viewed as ferromagnetic branch.

An ideal material to search for an optical magnon is
Fe3O4 (magnetite) [12, 13]. Fe3O4 can be considered
as an ordered mixture of FeO (S � 2) and of Fe2O3

(hematite) (S � 5{2). Accordingly, it is possible to in-
vestigate the FeO sublattice and the Fe2O3 sublattice
individually by observation of (220) and (222) magnetic
scattering intensities, respectively. As Fig. 3 shows, the
Fe2O3 order parameter follows T5{2 dependence. This
is the universality class of the 1D boson field in mag-
nets with half-integer spin (S � 5{2). The order pa-
rameter of the FeO subsystem follows the T9{2 function
of the isotropic boson field in magnets with integer spin
(S � 2). The different power functions of temperature
show that the two subsystems are largely decoupled and
are controlled by different boson fields. Surprisingly, the
boson fields that control spin dynamics of the FeO and
of the Fe2O3 subsystem have different dimensionalities.
This illustrates the vector character of the boson fields
and their clearly defined dimensionalities. By chance,
the critical exponents of the two universality classes are
both β � 1{3 [12]. Interestingly, to the (111) intensity
both subsystems contribute. The order parameter eval-
uated from (111) intensity exhibits perfect T3.5 depen-
dence [13]. The interference exponent of 3.5 can be con-
sidered as average of 4.5 and 2.5 of the FeO and of the
Fe2O3 subsystem, respectively.

Another interesting material with different magnetic
atoms is the solid solution Rb2Mn0.5Ni0.5F4 (Fig. 4) [14].
The high-energy magnon branch can be attributed to the
Rb2NiF4 system (S � 1) and the low-energy magnon
branch to the Rb2MnF4 system (S � 5{2). This view

conforms to the larger ordering temperature of Rb2NiF4

(TN � 94.5 K) compared to TN � 38.4 K of Rb2MnF4

and to the larger gap energy of Rb2NiF4 (4.28 meV) com-
pared to 0.63 meV for Rb2MnF4. Note that the high-
energy magnon branch always has integer spin. How-
ever, in the mixed system the gap energies are much
larger than in pure Rb2MnF4 and in pure Rb2NiF4. Ad-
ditionally, for the pure materials the qx sections of the
magnon dispersions often are not well resolved [1]. For
Rb2Mn0.5Ni0.5F4 the exponent of x � 1.625 can be un-
derstood as the average of x � 1.25 for pure Rb2NiF4

with S � 1 and of x � 2 for pure Rb2MnF4 with S � 5{2,
assuming 2D boson fields for both materials [1]. Accord-
ing to these x-values the order parameters of Rb2NiF4

and of Rb2MnF4 should decrease by T2 function and by
T3{2 function, respectively [1, 4]. The large gap ener-
gies in the mixed system indicate enhanced interactions
between magnons and boson field. The interference ex-
ponent of x � 1.625 indicates interactions between the
two subsystems.

Data of Fig. 4 show that the qx dispersion holds over
a large q-range if the gap energy is large. In other words,
the gap energy is a measure of the magnon-boson inter-
action. As the Rb2MnF4 branch shows, at the limit of
the qx function analytical crossover to sine function of
wave vector occurs. Interestingly, a phenomenological
phase shift has to be applied to the argument of the sine
function in order to obtain good agreement with the ex-
perimental data. The phase shift seems to be another
measure of magnon-boson interaction. A similar obser-
vation is made when Debye bosons and acoustic phonons
interact [17].

Similar results as for Rb2Mn0.5Ni0.5F4 are obtained for
Mn0.3Co0.7F2 [15] and for KMn0.29Co0.71F3 [16]. Fig-
ure 5 shows the high-energy CoF2 magnon branch and
the low-energy MnF2 branch of Mn0.3Co0.7F2 [16]. The
gap energies of 1.89 THz and 0.56 THz are larger than
in the pure materials (1.13 THz and 0.266 THz, respec-
tively). The fitted exponents x � 2 and x � 1 indicate
isotropic boson fields for integer spin (Seff � 1) [18] and
for half-integer spin (S � 5{2) [1, 4]. Analytical crossover
from power function to sine function of wave vector (in-
cluding phase shift) is evident.

3. Summary

In magnetic systems with two in-equivalent magnetic
atoms, two magnon branches commonly are observed.
The two magnon branches can be attributed to the con-
stituent materials, although they have modified energies.
In particular, magnon gap energies in the mixed sys-
tems are much larger than in the pure materials [14-16].
The upper magnon branch always is due to the compo-
nent with integer spin and larger gap energy [1]. The
large gap energies indicate that magnon-boson interac-
tions are much stronger than can be anticipated for the
exchange interactions between the in-equivalent magnetic
moments. Under this condition, optical magnons seem
not possible.
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