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In this work we suggest a rigorous mathematical approach for explanation of singular solutions of Bethe Ansatz
by means of Robinson complex hypernumbers. There are several approaches towards these singular solutions eg.
formal infinitesimals or germs of meromorphic functions. Our aim is to make them precise using non-standard
analysis and show that they are essentially equivalent.
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1. Introduction

Hyperreal numbers since their development [1] found
numerous physical applications [2]. There are also appli-
cations in probability in analysis of random walks, Brow-
nian motions cf. [3] and Feynman path integrals [4]. In
the present paper we apply non-standard analysis to the
system of algebraic equations connected to Bethe Ansatz.
We obtain a family of solutions to singular Bethe equa-
tions by means of arithmetic of hyperreal numbers, which
is the novelty of the paper. The solutions to these equa-
tions were found independently in [5] by means of germs
of meromorphic functions and in [6] by formal infinitesi-
mals. Our new non-standard solution here has necessary
mathematical precision and explain the nature of the sin-
gularities [5, 6].

2. Remarks on non-standard analysis

Non-standard analysis was developed by A. Robinson
cf. [1]. It answers the need of mathematicians and ph-
ysists for recognising different infinitesimal as well as
“arbitrarily large” quantities. Such a need was already
present in Leibniz philosophy of mathematics and math-
ematical analysis in particular cf. [7]. These ideas were
also present in the works of other mathematicians e.g.
L. Euler, T. Skolem and S. Łoś. T. Skolem discovered
existence of the non-standard arithmetic. However, it
was A. Robinson who constructed an extension (enlarge-
ment) of natural, real and complex numbers and then
developed the usual analytical tools that are now known
as non-standard analysis. The original construction uses
the advanced mathematical logic and set theory, espe-
cially the theory of higher order languages and the the-
ory of ultrapowers cf. [1, 7]. The great achievement of A.
Robinson was showing that the new theory is consistent
and non-contradictory. One can think [3] of hyperreals
as the model that comes by adding a predicate “st” for
standard (usual numbers) and three new axioms to the

∗corresponding author; e-mail: andkoper@amu.edu.pl

theory. These axioms along with all standard proper-
ties of the standard part of the theory govern the non-
standard analysis. From physical point of view these in-
formation is sufficient and one is more interested in basic
properties and rules of operation on Robinson hyperreal
numbers Rh. We briefly state them here. For an excel-
lent expositions on this see [3] or [1]. An infinitely small
or infinitesimal real number ε is a number such that its
absolute value |ε| is smaller than any number from the
sequence 1

n , where n is a standard positive integer. Simi-
larly, a number η is infinitely large if it is larger than any
standard natural number. A number r P Rh is called fi-
nite if |r|   m for some standard natural number m. For
better understanding of the non-standard part define the
halo of zero by the formula

halp0q � tx P Rh : x is infinitely smallu. (1)
Notice that halp0q has the following properties:
a) the only standard number in hal(0) is 0,
b) hal(0) is bounded with no least upper bound.
In agreement with intuition one can view infinitely

large hyperreals as inverses of nonzero elements of hal(0).
In addition the field Rh is totally ordered, but contrary

to the standard field of reals is non-Archimedean. Thus
we see that not all properties of standard real numbers
carry over to the hyperreals.

Every finite real number x can be written as
x � stpxq � εx, (2)

where stpxq is the standard part of x and εx P halp0q is
the non-standard one.

If x � stpxq�εx and y � stpyq�εy are two finite hyper-
reals then the operations of addition and multiplication
are as follows

x� y � pstpxq � stpyqq � pεx � εyq (3)
and

x � y � pstpxq � stpyqq

�pstpxq � εy � stpyq � εx � εx � εyq. (4)
One also introduces an equivalence relation among ele-
ments of Rh

(438)
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x � y iff x� y P halp0q. (5)
This relation is crucial to define the basic notions of non-
standard analysis such as convergence, derivative, inte-
gral etc, Let us remark at the end of this section that
from formulae (3) an (4) it readily follows that the set of
finite hyperreals Rf � Rh is a ring, halp0q an ideal of Rf
and one has an isomorphism

Rf {halp0q Ñ R, xÑ stpxq (6)
3. Singularities of Bethe Ansatz

For a homogenous isotropic Heisenberg ring the system
of Bethe equations [8] has the following form

aNα � p�1qr�1
¹

βPr̃ztαu

aαaβ � 2aα � 1

aαaβ � 2aβ � 1
, α P r̃, (7)

where r̃ � t1, . . . , ru. Notice that the product is single,
over β. N denotes the number of nodes and r the number
of deviations.

In particular for the two deviation case (r � 2) the
parameters a, b satisfy the Bethe system of equations:

αN � �
ab� 2a� 1

ab� 2b� 1
, bN � �

ab� 2b� 1

ab� 2a� 1
. (8)

The wave function is expressed by them in the following
way:

Ψpj1, j2q � pab� 2a� 1qaj1bj2

�pab� 2b� 1qaj2bj1 , (9)
where j1, j2 denote position of deviations in the Yang-
Baxter map:

1 ¤ j1   j2 ¤ N. (10)
For explanation of the singularities of Bethe parame-

ters of the bound states on the boundary of the Brillouin
zone (B) it is convenient to consider the Inverse Bethe
Ansatz (IBA). For this we look at the equations for pseu-
domomenta and energy.

ab � ω�k, ω � e2π i {N (11)

a� a�1 � b� b�1 � Ek,m. (12)
This gives the following quadratic equation for the

Bethe parameters
p1 � ωkqx2 � Ex� p1 � ω�kq � 0. (13)

The solutions for x with given k,E yield the Bethe por-
tions of phase (the energy level is here shifted by 4). The
method of obtaining these parameters is the IBA for the
two-magnon case [9, 10].

The energy of the bound state for k � 0 is E � 2. IBA
gives the following equations

ab � �1, a� 1{a� b� 1{b � 2. (14)
This system is contradictory (in C) and therefore has

no complex solution. In fact, if we pass to complex hy-
pernumbers and view (14) as the following modifications

stpabq � �1, st pa� 1{a� b� 1{bq � 2. (15)
we can obtain a precise solution. The solution is given
by assuming

a � t� u, b � �1{t� 2, (16)
where t P halCp0q, u � optq. Here halCp0q denotes the

complexification of halp0q. Observe that in the paper [5]
this solution was given by means of germs of meromor-
phic functions.

The base of the Fourier wavelets for a sector of two
spin deviations is a family of vectors:

|F, r, k, tα |�y
¸
jPÑt

ω�kj |Q, r, tα, j |,y k P B. (17)

This family is indexed by the wave vectors k P B, and
relative configurations tα � pα,N � αq, 1 ¤ α ¤

�
N
2

�
,

where for an odd k P B the integer α � N
2 . Further

Nt � N for α � N{2 and Nt � N{2 in the contrary.

It is worth observing that on a boundary of the Bril-
louin zone, k � N

2 , the value of the phase factor in (17)
is ω�k � �1.

For the two spin deviations on the boundary of the
Brillouin zone, the Hamiltonian in the base of wavelets
has the following diagonal form

ĤM
N,2 � diagr2, 0, . . . , 0s. (18)

pM � 1 � rkq-times degenerated null eigenvalues corre-
spond to the scattered states, whereas the value 2 cor-
responds to the bound state. Here M � N

2 and rk � 0
for even k P B and rk � 1 for k odd. The eigenfunction
for a bound state is given by means of the wavelet of the
nearest neighbour:

Ψ � A |F, r � 2, k �M, t1y , (19)
where A is a suitable complex constant. Equivalently,

|Ψy � A

�
N�1̧

j�1

p�1qj |j, j � 1y � |1, Ny

�
. (20)

Hence
Ψpj, j � 1q � p�1qjA, Ψp1, Nq � A (21)

and
Ψpj1, j2q � 0 (22)

for other case. On the other hand (9) for the singular
case takes the form

Ψpj1, j2q � strpab� 2a� 1qaj1bj2

�pab� 2b� 1qaj2bj1s. (23)
Comparison of the two forms of the eigenstate yields more
exact approximation of the quantity u. In order to van-
ish the term

strpab� 2a� 1qajbj�1s � 0

for pj, j � 1q in (23) we assume that the quantity u is
greater than 2 with respect to t. Hence

Ψpj, j � 1q � str�pab� 2b� 1qaj�1bjs

and finally
Ψpj, j � 1q � str2baj�1bjs � �2p�1qj . (24)

Thus in (21) A � �2. Similarly, Ψp1, Nq � stpab�2a�1q
abN which gives

Ψp1, Nq � st
�
�
u

tN

	
. (25)

From (21) and (25) one obtains
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u � KtN � optN q, K � 2. (26)
Nepomechie and Wang in their work [6] use formal in-
finitesimals. Observe that their solutions can be obtained
from ours, given by means of suitable germs or hyper-
numbers, by means of Cayley transformation which con-
nect spectral parameters and portions of phases:

a, b �
λa,b �

i
2

λa,b �
i
2

. (27)

The inverse transformation gives the following values
(cf. [6])

λ1 � λb �
i
2
� ε� cεN , λ2 � λa � � i

2
� ε,

where c � 2iN�1. This value of c follows from the fact
that K � 2 in (26).

4. Conclusions

The singularities of the Bethe system lead to its mod-
ification:

Ppabq � �1, P pa� 1{a� b� 1{bq � 2. (29)

Ψpj1, j2q � Prpab� 2a� 1qaj1bj2

�pab� 2b� 1qaj2bj1s,

where P denotes a suitable projection operator from the
enlarged analytic-algebraic system (eg. formal infinites-
imals, situable germs or complex hypernumbers). The
use of non-standard analysis provides the Robinson com-
plex numbers as the enlarged system and standarisation
as the projection operator. In [5] as an extended system
was choosen the family of germs of meromorphic func-
tions defined in a neighbourhood of zero and the projec-
tion was an evaluation of a germ at zero. One does not
need to analyse the nature of infinitely small quantities.
In this case P corresponds to passing to the zero limit
for the infinitesimals.
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