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Collinear and Non-Collinear Configurations
in Classical Geometrically Frustrated Ring-Shaped Systems
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Geometrically frustrated quantum spin systems, with competing antiferromagnetic couplings, show the Kahn
degenerate frustration for some specific values of Heisenberg Hamiltonian parameters. It has been recently shown
for rings with a defect bond and centered rings. In the case of classical counterparts of these systems, degenerated
configurations with the lowest energy are present for the energy function parameter greater than a certain threshold.
In these domains such configurations are planar but non-collinear with continuous changes of the net magnetic
moment with respect to the Hamiltonian parameter. Outside these domains there is unique collinear ground state
configuration (neglecting choice of the net magnetic moment direction). However, these collinear configurations
are the same in both non-frustrated and geometrically frustrated domains. Numerically exact calculations for
quantum systems strongly confirm that determined properties of their classical counterparts realize the classical
limit sÑ8.
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1. Introduction
The concept of frustration has its origin in classical

systems, especially in the frustrated Ising models and the
spin glass theory [1–3]. Frustration is present when there
exists at least one cycle of spins with non-zero exchange
integrals between consecutive spins and an odd number
of them are antiferromagnetic. This description is related
to the system geometry, so the term geometric frustration
is commonly used in this case. In such systems competing
interactions are present and such approach can be easily
adopted to many classical and semi-classical models, for
example, the Potts model or the classical counterpart of
the Heisenberg model [4, 5]. The presence of competing
interactions means that a system cannot simultaneously
satisfy all the interactions that it undergoes. This leads
to a more general concept of energetic frustration: a sum
of the minimum energies for each individual bond (each
term of an energy function) is less than the lowest energy
of a system in question [4, 6].

In the case of finite quantum systems, 7 put stress
on the the ground state degeneration introducing the
notion of degenerate frustration [7, 8]. This problem
has been studied recently in the context of magnetic
molecules [9–16] and it has been shown that in a certain
domain of the Hamiltonian parameters, a geometrically
frustrated spin system with competing interactions has
the unique ground state S-multiplet, with the same to-
tal spin number S as in the domain without frustration.
This region was assigned to the third type of frustration,
whereas the ground state multiplets with other values
of S represent the second type of frustration. The first
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type corresponds to the degenerate frustration [10, 14].
The third type of frustration is also observed in the Ising-
like counterparts of models considered [17].

Frustration in classical spin systems can be also
expressed in other words: non-frustrated systems
have a collinear configuration with the lowest energy
(LEC) [6, 18]. Therefore, if the LEC is non-collinear
then the system is frustrated. This condition does not
exclude collinear LECs in frustrated systems. By anal-
ogy with quantum systems, it is referred to as the third
type of frustration. In this paper two such systems are
presented: antiferromagnetic odd-numbered rings and
rings with an even number of spins uniformly coupled
to an extra one. The first case is related to the Cr9
molecule [10], whereas the other is a model of Fe7 or
Gd7 molecule [19, 20]. In these cases there is a well-
determined domain with the collinear LEC despite the
presence of frustration and this configuration is the same
as in the absence of frustration. It can be shown that
non-collinear LECs are planar in these models (cf. [18]),
hence positions of all but one spins (vectors) sj , j � p,
are determined by angles ϕj they form with a fixed one
sp and a set Φ � tϕju, with a chosen ϕp � 0, determines
a configuration of spins. Hence, for a pair of spins sj and
sj1 the classical counterpart of the Heisenberg coupling
yields Ejj1pΦq � Jjj1 cospϕj1�ϕjq (homogeneous systems
are considered and it is assumed that |sj | � 1). Due to
parity of the cosine function, non-collinear configurations
are (at least) two-fold degenerated—configurations with
opposite signs of all angles φj have the same energy, but
different chirality. Therefore, non-collinear LECs should
be assigned to the first type of frustration.

2. Rings with a bond defect

For a given set Φ of angles and non-zero couplings
between the nearest neighbors only, the energy is written
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as (n ¡ 1 is an odd integer)

EpΦq � α cos ξ �
n�1̧

j�1

cosψj , (1)

where ψj � ϕj�1 � ϕj for 1 ¤ j   n and ξ � ϕ1 � ϕn.
Due to symmetry of the problem, it is convenient to put
ϕp � 0 for p � pn � 1q{2. When α   0 the unique LEC
is a collinear one with sj � p�1qp�jsp, so ψj � π and
ξ � 0. Therefore, this antiferromagnetic configuration
ΦAF (Fig. 1a) has the energy

E
�
ΦAF� � α� pn� 1q; (2)

the net magnetic moment equals p�1qp�1sp.
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Fig. 1. The lowest energy configurations for a heptanu-
clear ring with a single bond defect (Jj j�1 � 1 for
1 ¤ j   7, J71 � α). (a) The unique configuration for
α   αc � 1{6 and (b) two configurations, with different
chirality, for α ¡ 1{6.

It can be shown that there are two non-collinear LECs
with all angles ψj � ψ and ξ � pn � 1qpπ � ψq, where
0   |ξ|   π (Fig. 1b); a sign of ξ determines chirality of
the corresponding LEC, respectively. However, the rela-
tion

α � �
sinψ

sinrpn� 1qψs
�

sinrξ{pn� 1qs

sin ξ
(3)

between the energy function parameter α and the an-
gle ψ (or ξ) can be satisfied for α greater than a cer-
tain critical value αc. This threshold can be easily found
as limψÑπ α � 1{pn � 1q. Then the lowest system en-
ergy as a function of the parameter α is given by Eq. (2)
for α ¤ αc and by Eq. (1) for α ¥ αc, where the val-
ues of ψj � ψ are determined from Eq. (3). The lat-
ter one reaches its maximum when |ξ| � π{2, so at
αc   αmax � sinrπ{2pn � 1qs   1 (cf. [6] and Fig. 2).
The net magnetization equals

M �
sinpnψ{2q

sinpψ{2q
sp,

what gives the non-magnetic LEC at α � 1 with |ψ| �
|ξ| � pn� 1qπ{n (Fig. 3).

3. Centered rings

A spin vector s0 is placed at the center of a regular
polygon and the other n vectors sj , 1 ¤ j ¤ n (for an
even number n), are placed at its vertices. Each config-
uration is determined by a set Φ � tϕju, 1 ¤ j ¤ n, of
angles they form with the vector s0. The couplings are
put to be Jj j�1 � 1 and J0j � α for 1 ¤ j ¤ n, n�1 � 1.
Hence, the energy function is written as
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Fig. 2. The angle ξ as a function of the parameter α for
some rings with a single bond defect (log-linear scale).
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Fig. 3. An absolute value of the net magnetization
M � |M | for an isosceles triangle within the classical
Heisenberg model compared with a relative total spin
number S{s in its quantum counterpart for s � 10 and
s � 5{2; see also [14, 16].

EpΦq �
ņ

j�1

cospϕj�1 � ϕjq � α
ņ

j�1

cospϕjq. (4)

This system is geometrically frustrated for α � 0; for
α � 0 there are two isolated systems, so the ring is or-
dered antiferromagnetically, ϕj�1 � ϕj � π, what gives
ϕ2k�1 � ϕ, ϕ2k � π � ϕ, 1 ¤ k ¤ n{2, for any
0 ¤ ϕ   2π. The non-frustrated counterpart of this
system is realized for ferromagnetic couplings within the
ring, Jj, j�1 � �1. In this case collinear LECs are deter-
mined by ϕj � ϕ, with ϕ � 0 for α   0, ϕ � π for α ¡ 0,
and any ϕ for α � 0.

It can be shown that the function EpΦq, for α � 0, may
reach its minimum for alternating angles ϕj � p�1qjϕ,
0 ¤ |ϕ|   π. The collinear LECs, ϕ � 0 or π, are non-
degenerated, whereas solutions with other values of ϕ
are two-fold degenerated. The minimum condition yields
a simple relation α � �4 cosϕ or ϕ � π � arccospα{4q.
Of course, it can be satisfied for |α| ¤ 4 only. Outside
this domain, the boundary values are retained, i.e. φ � 0
for α   �4 and φ � π for α ¡ 4 (see Fig. 4). The latter
ones are the same as in the non-frustrated domain, i.e. for
Jj j�1 � �1. The corresponding energies are �npα2{8�
1q and �np|α|�1q|, for |α| ¤ 4 and |α| ¥ 4, respectively.
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Fig. 4. The lowest energy configurations for a centered
regular octagon; Jj j�1 � 1 and J0j � α.

 0

 1

 2

 3

 4

 5

 6

 7

-4 -3 -2 -1  0  1  2  3  4

M
, 
S

/s

α

M

S/s, s = 1/2

S/s, s = 1

S/s, s = 5/2

Fig. 5. An absolute value of the net magnetization
M � |M | for a centered hexagon within the classi-
cal Heisenberg model compared with a relative total
spin number S{s in its quantum counterpart for s �
1{2, 1, 5{2; see also [16, 19, 20].

The net magnetization for |α| ¤ 4 is equal to p1�nα{4qs0
and it is constant outside this domain with M � p1 �
εnqs0, where ε denotes the sign of α. Hence, the non-
magnetic LEC is realized for α � 4{n (see Fig. 5).

4. Summary

It has been shown that in both systems studied in this
paper there are domain(s) of the energy parameter α,
where the collinear (so non-degenerated) LECs are real-
ized in geometrically frustrated systems. Moreover, these
configurations are the same as these observed in the cor-
responding systems without frustration. Therefore, they
can be considered as realizations of the third type frustra-
tion in classical systems [10, 14, 16]. Continuous changes
of configurations start (and end, in the case of centered
rings) at the well-determined critical value of α, inde-
pendent on system size for centered rings. It should to
be stressed that these obtained for the second of models,
|αc| � 4, are identical as those found in their quantum
counterparts [16, 19, 20]. Basing on numerical results, it
can be said that the first critical value for quantum rings
with a defect bond tends to calculated here αc � 1{pn�1q
(see Fig. 6 in Ref. [16]). Also other properties of quantum
systems (e.g. the total spin number presented in Figs. 4
and 5) show good convergence to their classical values as
sÑ8.
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