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Highly Degenerated Ground States in Some Rings Modeled
by the Ising Spins with Competing Interactions
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We discuss three Ising ring systems with competing interactions which are analogs of quantum systems and
we show that they exhibit similar properties. In particular, the archetypal system of three antiferromagnetically
coupled spins s has two magnetically degenerated ground states with |M | � s, when 0   J13 � α   1 � J12 � J23.
The same effect is observed in the centered rings and even-numbered systems with antiferromagnetic couplings
between the second neighbors which are the geometrically frustrated.
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1. Introduction

The notion of frustration in spin systems was intro-
duced in the spin glass theory [1–3], but recently it has
been studied in quantum spin systems, especially in the
context of magnetic molecules built of transition metal
ions with local spin s [4–12]. Kahn [15, 16] introduced
a term “degenerate frustration” pointing out importance
of the ground state (GS) degeneration in systems with
competing interactions. On the other hand, studies
of nonanuclear chromium molecules and their smaller
analogues [5–10] not only have confirmed the Kahn re-
sults that the GS degeneration is present for a few well-
determined values of a Hamiltonian parameter, but have
shown that in a certain domain of this parameter the GS
total spin S of geometrically frustrated spin system is the
same as in the domain without the geometrical frustra-
tion. This specific region was assigned to the third type
of frustration [5]. Some interesting results were obtained
for quantum spin systems [9, 10]. For example, in the
case of systems with one “defect” bond there is a series of
2s critical values of this coupling at which the GS total
spin S and its symmetry is changed. In this paper results
for the Ising models are presented and it is shown that in
such cases there is only one critical value (independent of
a system size n and a spin number s), so, qualitatively,
the Ising spin systems resembles the Heisenberg model
for quantum spins s � 1{2.

Classical spin systems are geometrically frustrated if
there exists at least one cycle of pairwise coupled spins
psj1 , sj2 , . . . , sjl , sj1q with an odd number of antiferro-
magnetic couplings Jjk jk�1

[1–3]. This condition leads
to a more general concept of the “energetic” frustration,
what means that the ground state configuration (GSC)
does not simultaneously satisfy all the constraints im-
posed by the Hamiltonian [17]. Usually, frustrated sys-
tems have highly degenerated GS. Some systems with
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geometric and energetic frustration, but with the non-
degenerated GS are discussed below. Moreover, the
GSC’s are the same as those realized in non-frustrated
systems, so the third type of frustration is revealed.
A paradigm example is provided by antiferromagnetic
rings with odd number of spin carriers (corresponding to
the Cr9 molecule and its analogues). The second model
describes antiferromagnetic rings with even number of
spins uniformly coupled to an additional spin s0, related
to Fe7 or Gd7 molecules [18, 19]. At the end rings with
competing interactions of the first and the second neigh-
bors are discussed.

The Heisenberg interactions ŝj � ŝk are replaced by
products of the z-components szjszk for arbitrary values
of spin numbers sj . Energy of two coupled spins is
Ejkpµq � Jjkmjmk, where µ � |m1, . . . ,mny, |mj | ¤ s,
1 ¤ j, k ¤ n, is the so-called Ising configuration. For
µ � |�m1, . . . ,�mny one has Ejkpµq � Ejkpµq, then
there is always trivial two-fold magnetic degeneration
(except for all mj � 0), which is neglected hereafter.
Non-zero exchange integrals are antiferromagnetic with
Jjk � 1 or Jjk � α for any real number α. Considered
systems are homogeneous, so all sj � s.

2. Rings with a bond defect

Energy of a configuration µ is given as (n is an odd
integer)

Epµq �
n�1̧

j�1

mjmj�1 � αmnm1. (1)

For α   0 there is the unique GSC µ0 withmj � p�1qj�1s
and energy Epµ0q � rp1�nq�αss2 (Fig. 1a); in this state
magnetization Mpµq �

°n
j�1mj � s. When α ¡ 0 the

system is geometrically frustrated and for large enough α
a pair of parallel spins has to be placed at one of the
other n�1 bonds, so the degenerated GS contains, among
others, n � 1 “basic” configurations µj with mj � mj�1

for 1 ¤ j   n and |M | � s (Fig. 1b). For s ¡ 1{2
there are pn� 2qp2s� 1q “extra” GSC’s µk,m with triples
ps,mk,�sq, 1   k   n, |mk � m|   s, and M � m
(Fig 1c). All these 2spn � 2q � 1 GSC’s for α ¡ 1 yield
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Fig. 1. Standard picture of the frustrated three-spin
Ising system and actual ground state configurations of
a system with a defect bond (J12 � J23 � 1, J13 � α).
(a) The unique configuration for α   1; (b) pn � 1q
“basic” configurations for α ¡ 1; (c) pn � 2qp2s � 1q
“extra” configurations for α ¡ 1; (d) 2p2s�1q additional
configurations at α � 1. The cases (c) and (d) are
possible for s ¡ 1{2 only. Empty, black, and gray circles
denote mj � �s and |mj |   s, respectively.

the GS energy Epµjq � Epµk,mq � rp3� nq �αss2. Both
above discussed types of the GSC’s are degenerated at
αDB
c � 1, E � p2 � nqs2, where 2p2s � 1q additional

states, with |m1|   s or |mn|   s have the same energy,
so the total degeneration at α � 1 equals 2ns (Fig. 1d).

3. Centered rings
For an even number n, spins sj , 1 ¤ j ¤ n, are placed

at vertexes of a regular polygon. They are coupled to the
nearest neighbors, Jj j�1 � α, and uniformly to an extra
spin s0, J0j � �1, so (n� 1 � 1)

Epµq � α
ņ

j�1

mjmj�1 � εm0MR, MR �
ņ

j�1

mj , (2)

where ε � �1; this system is geometrically frustrated for
α ¡ 0. For α   0 the ring is ordered ferromagnetically,
with MR � ns, and m0 � �εs (Fig. 2a). So, the GS en-

Fig. 2. Ground state configurations for the Ising-like
spins sj , 1 ¤ j ¤ 4, placed at vertexes of a square and
s0 at its center (Jj j�1 � α, J0j � 1). (a) The unique
configuration for α   1{2; (b) p2s�1q configurations for
α ¡ 1{2; (c) four types of additional configurations at
α � 1{2. Empty, black, and gray circles denotemj � �s
and |mj |   s, respectively. The sign of m0 has to be
changed for J0j � �1.

ergy equals npα�1qs2. For large values of α the first term
dominates and the ring is ordered antiferromagnetically,
mj � p�1qj�1 for 1 ¤ j ¤ n. Then MR � 0 and the to-
tal energy, �nαs2, does not depend on m0 and ε. So the
degeneration of this GS equals p2s� 1q (Fig. 2b). These
two types of GS’s are degenerated at αCR

c � 1{2. More-
over, at this point many additional configurations enter

the GS. Their number can be determined from combina-
torial considerations, but this problem is left out in this
paper. For n � 4 there are 8sps � 1q � 2 such configu-
rations (Fig. 2c), so the total degeneration at α � 1{2
amounts to 8s2 � 10s.

4. Second neighbors

Even-numbered rings become geometrically frustrated
when antiferromagnetic interactions of the next-nearest
neighbors are present. In the simplest, uniform, case the
energy is given as (n� p � p)

Epµq �
ņ

j�1

pmjmj�1 � αmjmj�2q . (3)

The second term describes two antiferromagnetic “sub-
rings”, which are geometrically frustrated when n{2 is
an odd number. For α   0 the non-frustrated system
has the unique antiferromagnetic GS with EpµAFq �
npα � 1qs2 (Fig. 3a). Large α ¡ 0 should lead to an-

Fig. 3. Ground state configurations for the Ising-like
spins sj � 1{2, 1 ¤ j ¤ 8, placed at vertexes of a reg-
ular octagon (Jj j�1 � 1, Jj j�2 � α). (a) The unique
configuration for α   1{2; (b) two configurations for
α ¡ 1{2; (c) three typical additional configurations at
α � 1{2. Empty and black circles denote mj � �1{2,
respectively.

tiferromagnetically ordered subrings. However, this is
possible for n{2 even only, so the cases n � 4q and
n � 4q � 2 are discussed separately. In the first case,
there are two non-equivalent antiferromagnetic config-
urations of subrings, so the two-fold degenerated GS
comprises µAF1 � |s, s,�s,�s, . . . ,�s,�sy and µAF2 �
|s,�s,�s, . . . ,�s,�s, sy (Fig. 3b). Hence, the GS en-
ergy equals EpµAF1p2qq � �nαs2. Comparing this value
with the previous result one obtains the critical value
αSN
c � 1{2. Additional states at α � 1{2 enter the GS

for n ¡ 4 and, for example, there 20 such states (so 23
in total) for n � 8 and s � 1{2 (Fig. 3c). Note that pre-
sented configurations have M � 0 in the first two cases,
whereas at α � 1{2 some of them have M � 0.

For n � 4q� 2 (and large enough α ¡ 0), the subrings
are geometrically frustrated and their configurations are
degenerated, what increase the whole system GS degen-
eration in comparison with the previous case. The min-
imum energy amounts to rp4� nqα� 2ss2 and the same
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Fig. 4. Ground state configurations for the Ising-like
spins sj � 1, 1 ¤ j ¤ 6, placed at vertexes of a regular
hexagon (Jj j�1 � 1, Jj j�2 � α ¡ 1{2). Four typical
configurations are presented. Empty, black, and gray
circles denote mj � �1 and mj � 0, respectively.

critical value αSN
c � 1{2 is obtained. For α ¡ 1{2 degen-

eration of the GS equals nsrpn� 4qs� 2s (Fig. 4). There
is no additional configurations at α � 1{2 for n � 6, but
degeneration at this point increases rapidly for n ¥ 10.

5. Summary

Three systems discussed above show some common fea-
tures. At first, the parameter α has the critical value
αc ¡ 0, independent on the system size n and the spin
number s. When α   αc the GS is not degenerated, ex-
cept for the trivial change mj Ñ �mj for all spins sj .
It has to be stressed that for 0   α   αc the systems
considered are geometrically (so also energetically) frus-
trated, but the degenerate (Kahn) frustration is absent.
Moreover, these systems retain appropriate GS’s from the
range α   0, where the geometrical frustration is absent.
In other words, despite the presence of competing in-
teractions (J and J 1, say) the systems considered do not
change their GSC’s if the appropriate ratio α � |J 1|{|J | is
small enough, i.e. α   αc. Therefore, all of them exhibit
the third type of frustration in this domain. Analogous
behavior has been found in the classical and quantum
counterparts of models discussed here [9, 10, 20]. How-
ever, in each of these cases systems behave in different
ways when the ratio α is large enough. The classical spin
vectors sj start to change their positions (they rotate in
planar systems what leads to two configurations with dif-
ferent chirality). In the quantum systems the GS, which
is a linear combination of many Ising configurations µ,
is modified in a continuous way except for a series of
well-determined “critical” values of α, when the GS is
significantly changed. In both systems, the critical val-
ues are size- and spin-dependent. The Ising-like model
shows the unique critical value with highly degenerated
GS when α ¥ αc.
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