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We perform exact numeric calculations for a few versions of the two-orbital Hubbard model on the four site
cluster. We show that the conventional spin 1 Heisenberg Hamiltonian can be obtained in the strong coupling
limit, but only for some versions of the two-orbital Hubbard model. Then we propose a modified version of the
Heisenberg Hamiltonian, that we call the two-orbital Heisenberg model, which is relevant in those cases, where the
conventional spin 1 Heisenberg model fails.
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1. Introduction

It is well known that the spin 1/2 Heisenberg Hamilto-
nian can be derived from the single-band Hubbard Hamil-
tonian at half filling in the large interaction limit [1–6].
However, as far as we know, not much consideration
has been given to studies of relationships between multi-
bands Hubbard models and the Heisenberg model with
spins higher than 1/2. This question is relevant for cor-
related materials with orbital degeneracy, i.e. for most
of the transition-metal compounds. In particular, it is
important in the theoretical analysis of single molecular
magnets (SMMs). Magnetic molecules are usually de-
scribed by phenomenological spin model Hamiltonians,
which contain the Heisenberg term as a dominant one
(e.g. [7, 8]). There are also attempts to describe these
systems from the first principles using the DFT method
and by applying the Falicov-Kimball model [9]. But re-
cently, it has been proposed to describe SMMs using the
multi-band Hubbard model (HM) in the large interaction
limit combined with DFT calculations [10]. Here we ex-
amine this approach by performing exact numerical cal-
culations for the four-site ring with two orbitals per site,
so we deal with the two-band HM. Such a small ring size
was chosen to allow for performing the exact numeric
calculations. Since we deal with small clusters, hence-
forth we replace the name ’multi-band HM’ by ’multi-
orbital HM’.

In this paper, we study two versions of the two-orbital
HM: the standard HM represented by the Hamiltonian
HHM , that contains only the direct Coulomb-type in-
teractions, and the developed HM (DHM) represented
by the Hamiltonian HDHM , that includes in addition
the exchange interactions (HHM was already considered
in [11–13] and HDHM in [14, 15] but for other systems).
In fact, we consider two types ofHDHM assuming two dif-

∗corresponding author; e-mail: j.matysiak@int.pan.wroc.pl

ferent possible cases for the hopping amplitudes of elec-
trons. The HamiltoniansHHM andHDHM are as follows:

HHM �
¸

i�j,m,m1,σ

tmm
1

c:imσcjm1σ � U
¸
im

nimÓnimÒ

� 1
2

¸
i,m�m1,σ

�
U 1nimσnim1σ̄ � U2nimσnim1σ

�
, (1)

HDHM � HHM (2)
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�
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imσ̄cim1σ̄cim1σ

�
,

where i and j denote nearest-neighbour sites, m,m1 la-
bel orbitals and σ, σ̄ label spins of electrons (σ̄ � �σ).
U , U 1 and U2 describe the Coulomb type on-site inter-
actions between two electrons: U - on the same orbital
and U 1(U2) - on different orbitals with opposite (parral-
lel) spins, respectively. J represents the on-site exchange
coupling, but it also enters the interaction constants in
HHM . Indeed, we take U 1 � U � 2J , U2 � U � 3J , as
it was derived in [12]. So the Hamiltonian HHM is not
equivalent to HDHM with J � 0.

Our aim is to compare the lowest parts of energy spec-
tra of HHM and HDHM with the spectra of effective spin
models derived from the perturbation theory. Since for
all these models, subspaces with various total spin S are
orthogonal to each other, we simplify presentation of our
results by considering only states with the total spin S=0.
However, other subspaces should of course be included if
one would want to compare calculated results with ex-
perimental ones.

2. The lowest parts of energy spectra

Contrary to the single orbital model, in the multi or-
bital case, the states with different spin configurations
have, in general, different energies even in the limit where
tmm

1

� 0 for all hopping constants. Then, in order to
obtain the effective Hamiltonian with only spin degrees
of freedom, we need to restrict our considerations to a
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subspace with the lowest energy, where all unperturbed
states are degenerate.

The number of all states of the cluster with the total
spin S � 0 is 4900. When all tmm

1

� 0, then energies of
these states assume 26 different values both in the case of
HHM and HDHM , but they are not the same in the two
cases. It also turns out that the degenerations of these
states are different in the both cases. Indeed, the ground
state degeneracy amounts 6 for HHM and 19 for HDHM .

Figure 1 presents the lowest parts of energy spectra
of the two orbital HM in the limit where all hopping
constants tmm

1

� 0 (i.e. t11 � t22 � t12 � t21 � 0),
obtained for the four site chain with two orbitals on each
site. The parameters U � 6 eV, J � 0.3 eV are chosen in
accordance with the calculations reported in [10].

Fig. 1. Comparison of the lowest parts of energy spec-
tra of HHM and HDHM for the subspace with the total
spin S � 0 obtained in the limit where all hopping con-
stants tmm1

� 0, U � 6 eV and J � 0.3 eV. To enable
the comparison the spectra are separated (here the spec-
trum of HHM is moved up by 1 eV).

Fig. 2. Labelling of the hopping amplitudes tmm1

be-
tween the sites i and j in the two orbital HM. m,m1 are
orbital indices.

In the two orbital HM there are, in general, four inde-
pendent hopping amplitudes tmm

1

, which are illustrated
in Fig. 2. Here we restrict our studies only to the two
special cases: a) t11 � t22 � t, t21 � t12 � 0 and b)
t11 � t22 � t21 � t12 � t. For the finite hopping ampli-
tudes tmm

1

, we observed a slight splitting of each degener-
ate subset of eigenvalues presented in Fig. 1. Obviously,
the splittings in the cases a) and b) are different.

Now we would like to focus our attention on the DHM.
Our task is to compare the lowest part of energy spectrum
of HDHM with the spectrum of the spin-1 Heisenberg
Hamiltonian HS�1

Heis applied to the ring of four spins Si �
1

HS�1
Heis � Γ

¸
ij

SiSj, (3)

and the lowest part of the spectrum of the multi-orbital
Heisenberg Hamiltonian Hmorb

Heis

Hmorb
Heis �

¸
mm1ij

Γmm1simsjm1 , (4)

where Si � pSxi , S
y
i , S

z
i q refers to the ion’s spin 1 at the

site i and sim refers to the electron’s spin 1{2 on a single
orbital m. We point out here that the dimensions of
Hilbert spaces of admitted states of the Hamiltonian (4)
and (3) are different. Indeed, in our system the number
of all admissible states amounts 19 in the case of HS�1

Heis
and 70 in the case of Hmorb

Heis . However, the Hamiltonian
(4) is acting only within the subspace of the lowest energy
eigenstates ofHDHM (they are degenerated in the atomic
limit) that also contains 19 states.

Since in our calculations we put U � 6 eV, J � 0.3 eV,
tmm � 0.1 eV, then from the perturbation theory for
Hmorb
Heis we get the exchange parameters being approxi-

matively equal to Γmm1 �
2ptmm

1

q2

U � J
� 0.00318 eV.

Fig. 3. Comparison of the lowest parts of energy spec-
tra of the models HDHM , HS�1

Heis and Hmorb
Heis for tmm

�

0.1 eV, tmm1

� 0 for m � m1, U � 6 eV, J � 0.3 eV and
Γ � 0.00318 eV. To enable the comparison the spectra
are separated from each other by 0.01 eV.

The result of the comparison of the energy spectra is
illustrated in Figs. 3 and 4. Figure 3 shows the data for
the case a) and Fig. 4 for the case b). In both figures we
compare the lowest 19 eigenvalues of the models: HDHM ,
HS�1
Heis and Hmorb

Heis . Based on this comparison we admit
that the Hamiltonian HS�1

Heis may, indeed, play a role of
the effective Hamiltonian when t11,t22 " t12,t21, but it is
not the case in the region where t11,t22 � t12,t21. On the
other hand, the Hamiltonian Hmorb

Heis seems to be more
universal, as it is relevant in the both cases.
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Fig. 4. Comparison of the lowest parts of energy spec-
tra of the models HDHM , HS�1

Heis and Hmorb
Heis for tmm1

�

0.1 eV for all m,m1, U � 6 eV, J � 0.3 eV and
Γ � 0.00318 eV. To enable the comparison the spec-
tra are separated from each other by 0.015 eV.

We also performed calculations for the Hamiltonian
HHM , where the exchange interaction terms are omit-
ted [11, 12]. It’s overall spectrum is similar to the one
obtained for HS�1

Heis, but their lower parts differ consid-
erably. In particular, the lowest energy subspace now
contains only 6 states, as opposed to 19 in the previous
case (for the total spin of the whole molecule S � 0).

Then, the result of comparison of energy spectra of the
Hamiltonians HHM , HS�1

Heis and Hmorb
Heis applied to those

the lowest 6 energy levels is illustrated in Fig. 5.

Fig. 5. Comparison of the lowest parts of energy spec-
tra of HHM , HS�1

Heis and Hmorb
Heis for tmm

� 0.1 eV,
tmm1

� 0 for m � m1, U � 6 eV and J � 0.3 eV. To
enable the comparison the spectra are separated from
each other by 0.005 eV.

3. Summary and conclusions

We performed exact numeric calculations for the four
site ring, with two orbitals and two electrons per site,
using the two-orbital Hubbard Hamiltonians HHM and
HDHM . We have found that the energy spectra of the
spin 1 Heisenberg model HS�1

Heis and the lowest part of
the spectra of HDHM are equivalent only when the hop-
ping amplitudes between orbitals of the same type are
much larger than between different ones. On the other
hand, the multi-orbital Heisenberg model Hmorb

Heis repro-
duces satisfactory the lowest part of energy spectrum of
HDHM both for the case a) t11 � t22 � t, t21 � t12 � 0
and b) t11 � t22 � t21 � t12 � t.

We also found that the lowest part of energy spec-
trum of the simplified multi-orbital Hubbard Hamilto-
nian HHM (without the exchange terms) can also be ap-
proximately reproduced by Hmorb

Heis .
So we suggest to use the model Hmorb

Heis in further stud-
ies of SMM’s materials, as it seems to represent more
adequately a wider class of microscopic models of corre-
lated electrons in the large interaction limit than the spin
S Heisenberg model HS

Heis.
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