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Statistics of Tunneling Events in Three-Terminal
Hybrid Devices with Quantum Dot
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We investigate statistics of the tunneling events in the short time limit in terms of the waiting time distribution
(WTD), defined as the probability for a delay time between two subsequent transitions of particles, and consider it
for a quantum dot (QD) strongly coupled to a superconducting and weakly coupled to two normal electrodes. Our
study focuses on the WTD in the subgap transport, when coherent exchange of the Cooper pairs occurs between
the QD and the superconductor. The dynamics can be described in terms of a Markovian generalized master
equation for the reduced density matrix. We observe coherent oscillations between the Andreev bound states in
the correlated jumps, both for the local and non-local WTDs. In addition the analysis of the transient currents
give us some insight into dominant relaxation processes in short time scales.
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1. Introduction

To fully characterize charge current fluctuations in
mesoscopic systems it is necessary to study statistics
of tunneling events, e.g. by means of the full counting
statistics (FCS) or the waiting time distribution (WTD)
in the long or the short time limit, respectively. WTDs
in the mesoscopic systems have been studied mainly in
two-terminal devices [1]. Particulary interesting is an
analysis of the WTD in systems with superconducting
correlations where coherent oscillations of Cooper pairs
between QD states show interesting dynamics [2]. Such
high frequency charge dynamics can be probed in exper-
iments performed in multiterminal hybrid devices con-
sisting of the QD coupled to one superconducting and
several normal electrodes [3].

2. Method

In the paper we analyze dynamics of tunneling elec-
trons in the hybrid system which consists of the quan-
tum dot (QD) strongly coupled to the superconducting
electrode and weakly coupled to two normal metal elec-
trodes. We are interested in a subgap transport (for
large superconducting gap ∆ Ñ 8) where an effective
Hamiltonian for the QD in proximity to the supercon-
ducting electrode in the BCS approximation takes the
form Heff � ε0

°
σ d

:
σdσ � UnÒnÓ � ΓSpd

:
Òd

:
Ó � dÓdÒq{2,

where ε0 is the single particle energy, d:σpdσq create (anni-
hilate) an electron with spin σ � tÒ, Óu on QD, nσ � d:σdσ
is the number operator, U denotes a Coulomb interac-
tion on QD and ΓS describes coupling between the QD
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and the superconducting electrode. The effective Hamil-
tonian Heff mixes the empty |0y and double occupied
|Dy � |ÒÓy states on QD. It has four eigenvalues: two
singly occupied (odd) QD states |Òy and |Óy with en-
ergy ε0 and two states with even number of electrons
|�y � α� |0y 	 α	 |Dy, where α� �

a
1{2	 δ{p4εAq

with energies ε� � δ{2 � εA. The excitation energies of
QD define Andreev bound states EAγγ1 � γU{2 � 2γ1εA,
where 2εA �

a
δ2 � Γ 2

S is a splitting between |�y and
|�y states, while δ � 2ε0 � U is a detuning between |0y
and |Dy states [2, 4, 5]. We also introduce the effective
tunneling rates Γα to describe electron transfer between
QD and the normal metal electrodes, α � tL,Ru.

When couplings to the “external” normal electrodes
ΓLpRq are weak (i.e. in the sequential tunneling limit)
and the transport is unidirectional (the chemical poten-
tials µα of the normal electrodes is much larger than all
relevant energy scales of the system apart from the su-
perconducting gap) the dynamics of the system is Marko-
vian. The generalized master equation (GME) for the re-
duced system density operator ρptq has a form 9ρ � Lρptq
where L is Liouvillan of the system. One can rewrite
GME in terms of the jump operators Jk which describes
various single electrons tunneling processes from (to) the
normal electrode L pRq into (from) the “proximized” QD
as 9ρ � pL0 �

°
k Jkqρptq. L0 is uniquely defined by the

condition L0 � L�
°
k Jk. One can define WTD describ-

ing probability distribution wk,lpτq for subsequent jumps
of types l and k separated by time τ as [1]

wk,lpτq �
TrrJk eL0τJlρ0s

TrrJlρ0s
, (1)

where ρ0 denotes the stationary state which is a solution
of Lρ0 � 0 and L0 describes the coherent time evolu-
tion of the proximized QD without jumps to the normal
electrodes. It is worth noting that TrrJlρ0s defines a sta-
tionary current Il for the type l jump processes.
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3. Results

In order to study electron dynamics we define a
reduced density matrix as a column vector ρ �
pρ00, ρÒÒ, ρÓÓ, ρDD, ρD0, ρ0Dq

T where ρξξ1 � xξ| ρ |ξ1y and
ξ, ξ1 P t0, Ò, Ó, Du. The diagonal elements of the density
matrix ρξξ describes occupation probabilities of the QD
while the non-diagonal elements ρD0 and ρ0D are known
as coherences. In addition we assume the unidirectional
transport (large bias voltage limit) with the only possi-
ble processes between the proximized QD and the normal
electrodes. Therefore, the Liouvillian of the system takes
the form

L �

�
��������

�2ΓL ΓR ΓR 0 iΓS

2 � iΓS

2

ΓL �ΓN 0 ΓR 0 0

ΓL 0 �ΓN ΓR 0 0

0 ΓL ΓL �2ΓR � iΓS

2
iΓS

2
iΓS

2 0 0 � iΓS

2 Γ�
N 0

� iΓS

2 0 0 iΓS

2 0 Γ�
N

�
�������

, (2)

where ΓN � ΓL�ΓR and Γ�
N � �ΓN � iδ. We introduce

jump operator JLe (JRe) through the L (R) junction
which describes transitions from the singly occupied odd
states (|σy) to the even occupation sector (|Dy or |0y).
The reverse processes, which transfer an electron from
the even to odd sector are described by JLo (JRo).

According to Eq. (1) one can analyse either local WTD
(i.e. between subsequent jumps on the same electrode)
or non-local WTD (for subsequent jumps, which occurs
through different contacts). The results of calculations
are shown in Fig. 1 for several values of the coupling
to the right electrode ΓR and different position of the
QD energy level ε0. It is worth to notice that the
WTD for subsequent jumps from the same sector (e.g.
wLe,Lepτq, wLo,Ropτq, e.t.c.) are zero.

Let’s focus on wLe,Lopτq � wLe,Ropτq. After the jump
(JLo or JRo) to the odd sector the system is in the ini-
tial single electron state, so is decoupled from the su-
perconducting electrode. Then the next jump (JLe) is
a Poissonian process with the rate ΓL. Therefore am-
plitudes of the waiting times wLe,Lopτq � wLe,Ropτq �
ΓL expp�ΓNτq decrease exponentially as a function of τ
with the rate which can be tuned by ΓR. On the other
hand wRe,Lopτq � wRe,Ropτq � ΓR{ΓLwLe,Lopτq with the
amplitude wRe,Lopτ � 0q � wRe,Ropτ � 0q � ΓR. As one
can see, all aforementioned WTDs do not depend on ΓS
and ε0.

The situation changes when the system is prepared in
one of the even states |0y or |Dy, respectively. In Fig. 1
we have plotted non-local wLo,Repτq (thick curves) and
local wRo,Repτq (thin curves) for the electron-hole (e-h)
symmetry point ε0 � �U{2 (δ � 0) and ΓR   ΓL or
ΓR ¡ ΓL. In this case one observes oscillations with
the period T � π{εA (i.e. inverse proportional to the
splitting between |�y and |�y states). The oscillation
period can be only slightly modified by ΓLpRq because
ΓS " ΓLpRq. The non-local WTD for τ � 0 has a finite
amplitude because the transition JLo : |0y Ñ |σy is pos-

Fig. 1. Inset: Schematic view of the system, consisting
of the “proximized” quantum dot (QD) weakly coupled
with the left (L) and right (R) normal electrodes. Local
(blue thin lines) and non-local (red thick lines) WTD
for electron-hole symmetry point δ � 0 (ε � �U{2q and
ΓR � ΓL{2 (solid lines) or ΓR � 2ΓL (dashed lines).
For wRe,Lopτq and wLe,Lopτq the initial state (the state
after the first jump) is |σy, for the wLopRoq,Repτq is |0y
while for wLopRoq,Lepτq is |Dy. Other parameters are
U � 1, ΓL � 0.01, ΓS � 0.2. Inset shows results for
δ � 0.2 (ε � �0.4Uq.

sible. On the other hand the local WTD starts with 0
because first the system has to evolve to the state |Dy
due to the coherent tunneling of the Cooper pair from
the superconductor to the QD. Therefore both curves for
the non-local and local WTD are shifted in a phase by
φ � T {2. The maximal amplitude of local wRo,Repτq
increases with ΓR while for the non-local wLo,Repτq it
seems unchanged. For both local and non-local WTD,
the amplitudes of oscillations disappear faster in time
as the coupling to the R electrode increases. The non-
local wRo,Lepτq (thick lines) and local wLo,Lepτq show
similar behaviour, although the amplitudes are differ-
ent, see Fig. 1. In the insets we have plotted results
for ε0 � �U{2 (δ � 0) i.e. away from the e-h symmetry
point. Now the non-local WTD characteristics show dif-
ferent behaviour than local ones. It is interesting that a
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Fig. 2. Transient (relaxation) currents: IL (thick red
line) and its components ILe (thick red dashed line) and
ILo (thick red dotted line), IR and its components (thin
blue lines) for ΓR � 2ΓL and δ � 0.2.

gate voltage (i.e. a shift of the ε0) does not change the
amplitude of the non-local WTDs for τ � 0 (cf results
in the main figures and insets). Moreover the non-local
WTDs are now non-zero functions of τ .

To have some insight into microscopic processes we
have calculated transient (relaxation) currents defined as
Ikpτq � TrrJk eLτρls where ρl � t|0y , |σy , |Dyu. The re-
sults are shown in Fig. 2 for the total current flowing
through the left (right) tunnel junction, IL � ILe � ILo
(IR � IRe� IRo) and their components. The clearly visi-
ble oscillating currents (with the period T � π{εA which
do not depend on the coupling ΓLpRq) are activated when
the system is initially in one of the even state (|0y or
|Dy). Because IR � IL due to their phase shift one can
also find transient currents flowing between QD and the
superconducting electrode, IS � IL � IR. It also oscil-
lates in time and can be positive, negative or can change
its sign depending on the system parameters. From the
transient currents one can find dominant relaxation pro-
cesses in different time scales. In the very short time
scale the system relaxes from the state |0y mainly due to
the transitions JLo : |0y Ñ |σy with the relaxation time
1{T � 2ΓL while from the states |Dy due to processes

JRo : |Dy Ñ |σy with the relaxation time 1{T � 2ΓR.
On the other hand, in the long time limit (i.e. in the sta-
tionary state) dominate processes through the R junction
JRe : |σy Ñ |0y and JRo : |Dy Ñ |σy because ΓR ¡ ΓL.
In addition components ILe (due to JLe : |σy Ñ |Dy) or
IRe (due to JRe : |σy Ñ |0y) are always monotonically
increasing function of time. In general their amplitude is
different when the ΓR � ΓL.

When the system is initially in the single occupied state
|σy one do not see oscillations. Now at the short time
limit the two processes are responsible for the relaxation,
JRe : |σy Ñ |0y and JLe : |σy Ñ |Dy. Both with the
same relaxation time 1{T � ΓN . Their amplitude can be
tuned by ΓR.

4. Conclusions

In the multiterminal systems apart from the local
WTDs one can define also non-local WTDs which show
different behaviour when the system works far from the
electron-hole symmetry point. The WTDs oscillate due
to coherent transitions of the Cooper pairs between QD
and the superconductor. These oscillation are also clearly
visible in transient currents characteristics. In addition
the transient currents analysis shows a dominant micro-
scopic relaxation processes on both the short and the long
time scales.
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