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Majorana States in Presence of Electron Interactions:
Spinful Fractional Josephson Junction with a Quantum Dot
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We consider a fractional Josephson junction mediated by a quantum dot in which the Zeeman field arising
from the magnetic fields driving left and right wires into topological phase can be tuned. Both fields, forming an
angle Θ , can be rotated in the common plane perpendicular to the spin-orbit field in the wires. For Θ � 0 the
dot can be regarded as effectively non-interacting due to the large Zeeman splitting, whereas for Θ . π electron
interactions are switched on the dot, affecting Majorana states. The tunnel electrode, weakly coupled to the
dot from the top, allows to probe their density of states via conductance measurement. We show that electron
interactions renormalize Majorana peak and introduce characteristic asymmetry in the gate voltage dependence of
the transverse zero-bias conductance through the dot.
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1. Introduction
Majorana fermions, exotic quasiparticles being their

own anti-particles, have been recently spotted in solid
state. Their properties are interesting both from funda-
mentals as well as their promise of fault-tolerant quantum
computation [1]. In solid state systems, Majorana bound
states (MBS) exhibit spin properties in the sense that, if
coupled to a non-topological object, they pick a definite
spin polarization of electron tunneling into them. Recent
experiments of STM spin polarized tunneling into Majo-
rana mode at the vortex center of a topological supercon-
ductor [2] show that the Majorana mode picks the spin of
electron which is parallel to the external magnetic field.
It is manifested in a substantially higher zero-bias peak
in differential conductance as compared to the case of the
antiparallel STM tip polarization and external magnetic
field. Thus, equal spin Andreev reflections are favored in
the transport [3].

In our work we address the question how spin de-
pendent tunneling can be manifested in Josephson junc-
tion hosting MBS and mediated by a non-topological ob-
ject (quantum dot-QD). Our device under consideration,
shown in Fig. 1, is similar to that realized experimen-
tally by Chang et al. [4]. The wires are strongly coupled
through the dot electrostatically created from the part of
the wire. It allows the formation of a bound fermionic
state inside the dot out of the hybridized MBS adjacent
to the dot.

2. The model and theoretical approach
We assume that the quantum dot is exposed to the

action of the magnetic field Btot � BL � BR com-
posed of magnetic fields BL and BR (assuming |BL| �
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Fig. 1. Schematic of the device setup showing the rota-
tion of magnetic fields BL and BR in the plane perpen-
dicular to spin-orbit field BSO, equal in both sections of
the wire.

|BR| � B) forming an angle Θ , which drive the left and
the right wire into topological state, respectively. Zee-
man field inside the dot is Ez � |g|µBBtotpΘq{2 with
Btot � 2B cospΘ{2q. It yields Ez � E0

z cospΘ{2q with
E0
z � |g|µBB. Under the action of Zeeman field QD level

is split: εÒ{Ó � εd	E
0
z cospΘ{2q�Vg with the capacitative

shift of the dot level by gate voltage Vg.
The dot Hamiltonian is of the form: HQD �°
σ�Ò,Ó εσd

:
σdσ � UnÓnÒ. We assumed εÓ{Ò � εF p� 0q

for B � Vg � 0. In the following we take the induced
superconducting gap ∆ as energy unit, and E0

z � 2∆ [5].
The polarization of the tunnel electrode is described

by spin-dependent broadenings of the QD level: ΓÓ �

Γp cos2pΘ{4q and ΓÒ � Γp sin2pΘ{4q. For Θ � 0, when
the electrode is fully spin-down polarized, we introduced
small broadening ΓÒ � 10�6 for consistency of numerical
calculations of the dot occupancies.

The Hamiltonian describing the tunnel electrode as
well as the tunneling between the dot and the electrode
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has the usual form [6]. The topological wires are are mod-
elled by Kitaev chains in the simplest limit of µα � 0 and
|∆α| � tα � t, possessing Majorana bound states at their
ends [6]; for α-wire they are γαA,1 and γαB,N , where N is
a number of sites in a given chain (see also Fig. 1).

The dot level εd is coherently coupled to the end-wire
MBS: γLB,N and γRA,1, which are converted into the Dirac
fermion d inside the dot:

d �
1

2

�
γRA,1 � iγLB,N

�
. (1)

Depending on the angle Θ formed by magnetic fields BL

and BR, the Majorana states γLB,N and γRA,1 can pick
electrons with different spin orientations tunneling from
the dot:

d � cos

�
Θ

4



dÓ � sin

�
Θ

4



dÒ. (2)

From Eqs. (1) and (2) the Majorana states are calculated:
γLB,N �

i

�
cos

�
Θ

4



pd:Ó � dÓq � sin

�
Θ

4



pd:Ò � dÒq,

�
(3)

γRA,1 � cos

�
Θ

4



pd:Ó � dÓq � sin

�
Θ

4



pd:Ò � dÒq. (4)

The next step is derivation of the Hamiltonian describ-
ing tunneling between topological wires via the dot.
It proceeds similarly as in [6]. We retain here only
the most important term describing the tunneling be-
tween MBS adjacent to the dot: Htun � � i

2 ptL �

tRq cos
�

∆φ
2

	
γLB,Nγ

R
A,1, which with the help of Eqs. (3)

and (4) it takes the refermionized form:

Htun � �ptL � tRq cos

�
∆φ

2




�

�
cos2

�
Θ

4



pd:ÓdÓ �

1
2
q � sin2

�
Θ

4



pd:ÒdÒ �

1
2
q

� sin

�
Θ

4



cos

�
Θ

4



pd:ÒdÓ � h.c.q

�
. (5)

In the following we will also take into account a pos-
sibility of a finite hybridization εα � e�Lα{ξ (Lα is the
length of the wire and ξ is the superconducting coherence
length) described by Hhyb � �

°
α�L,R ipεα{2qγ

α
A,1γ

α
B,N .

Using Eqs. (3), (4) it has the form:

Hhyb �
εL
2

�
cos

�
Θ

4



pf :LÓd

:
Ó � f :LÓdÓ � h.c.q

� sin

�
Θ

4



pf :LÒd

:
Ò � f :LÒdÒ � h.c.q

�

�
εR
2

�
cos

�
Θ

4



pf :RÓd

:
Ó � f :RÓdÓ � h.c.q

� sin

�
Θ

4



pf :RÒd

:
Ò � f :RÒdÒ � h.c.q

�
, (6)

where fασ � p1{2qpγαA,1,σ � iγαB,N,σq is the extended,
non-local fermion emerging from the hybridization of two
MBS. The spin index attached to Majorana operators has

here the sense of Majorana spin polarization, indicating
that when a Majorana state is coupled to non-topological
object it can absorb or emit electrons with the specific
spin projection. Moreover, the conservation of spin in
Eq. (6) in tunneling processes between the dot and ex-
tended fermionic states in the wires reflects the promo-
tion of equal spin Andreev reflections [3].

The retarded QD Green function, Gpt� t1q � � iθpt�
t1qxdptqd:pt1q � d:pt1qdptqy is obtained by equation of mo-
tion method, utilizing refermionized Hamlitonian of the
system. It has the form in ω-domain for spin-down com-
ponent:

GÓpωq �

AHÓ

ω � εÓ � α2pt� ε�AHÓq � i
ΓpÓ
2 � Σdiag

Ó pωq � Σmix
Ó pωq

,

Σdiag
Ó pωq �

α4ε2�AHÓ

ω � εÓ � α2pt� ε�q � i
ΓpÓ
2

,

Σmix
Ó pωq �

α2β2t2

ω � εÒ � β2pt� ε�q � i
ΓpÒ
2

,

AHÓ �
ω � εÓ � Up1� xnÒyq � α2t� i

ΓpÓ
2

ω � εÓ � U � α2t� i
ΓpÓ
2

, (7)

where we have introduced the notation: α � cospθ{4q,
β � sinpθ{4q, t � ptL� tRq cosp∆φ{2q, ε	 � pε2L	 ε

2
Rq{2ω

and εÓ	 � εÓ�α
2pt	ε�q, εÒ	 � εÒ�β

2pt	ε�q. The cor-
responding spin-up Green function GÒ, can be obtained
from Eq. (7) by the exchange of spin indices Ó�Ò and
α� β. In the derivation we retained only the first terms
Σdiag
Ó and Σmix

Ó of the selfenergy, diagonal in spin in-
dices and mixing the spin indices, respectively. Because
the dot is only weakly coupled to the tunnel electrode
in order to avoid Kondo resonance formation, the dot’s
Green’s function is calculated within Hubbard I approx-
imation [7], with U " ∆, as follows from the experi-
ments [8–12]. For U Ñ8 one obtains AHσ � 1� xnσ̄y.

3. Numerical results and discussion

In the present paper we concentrate on the transverse
zero-bias conductance (ZBC) of the dot through the tun-
neling electrode calculated within Meir-Wingreen formal-
ism [13], which probes the density of states of the dot
ρσpωq � �p1{πq=Gσpωq through relation (per spin σ):

Gσ �
e2

h

πΓpσ
2

»
dε

�
�
Bfpεq

Bε



ρσpεq. (8)

For T � 0 ZBC directly reveals the behavior of the den-
sity of states at ω � εF , where MBS resonances emerge.
Firstly let us consider the case of long topological wires,
εL, εR � 0, when the MBS adjacent to the dot form
the bound fermionic state. For Θ � 0, which corre-
sponds to the effectively non-interacting dot [6], only
εÓ sub-level is active within the gap and εÒ is pushed
well above Fermi level. For the renormalized level ε̃Ó �
εÓ � ptL � tRq cosp∆φ{2q in resonance with εF we get
ρÓpω Ñ 0q � p1{πΓpÓqp1 � xnÒyq. It gives the unitary
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Fig. 2. Spectral densities of the dot (spin Ó-solid and
spin Ò-dashed curves) multiplied by γσ � Γpσ{2 for
various Θ angles: 0-upper panel, π-middle panel and
0.99π-lower panel, calculated for εL � 0.02 and εR � 0,
Vg � �2 for upper panel and Vg � 0 for middle and
lower panel. Other input parameters are Γp � 0.02,
B � 2, tL � tR � 0.1 and ∆φ � π.

limit of ZBC in T � 0; GÓ � e2

h p1�xnÒyq because of zero
occupancy of the upper sub-level xnÒy � 0.

For one of the hybridizations finite εα � 0 and the
other εα1 � 0, case depicted in Fig. 2, the unpaired Ma-
jorana state produces a characteristic resonance on Fermi
level. ZBC in T � 0 in this case obtained from Eqs. (7)
and (8) is GσpT � 0q � e2

h
1�xnσ̄y
2�xnσ̄y

, which for Θ � 0, when

xnÒy � 0 (upper panel of Fig. 2), yields GÓpT � 0q � e2

2h ,
as for non-interacting dot [6]. For Θ � π we need the val-
ues of dot occupancies xnÓy � xnÒy, which are calculated
selfconsistently by the integration of the spectral density
of the dot [14]. Their Vg dependencies are practically the
same for any arrangement of εL and εR. In particular for
εL � εR � 0, Θ � π and ε̃Ó{Ò � εF the occupancies can

Fig. 3. Zero-bias conductances calculated in T � 0.01.
The arrangement and other calculation parameters are
the same as in Fig. 2.

be calculated analytically, yielding xnÓy � xnÒy � 1{3. It
implies a unique value of Majorana conductance peak of
G � p2{5q e

2

h per spin, which is the result of electron inter-
actions inside the dot (see the middle panel of Fig. 2). For
finite Zeeman splitting, shown in the lower panel of Fig. 2,
the arrangement of εÓ   εF   εÒ implies xnÓy ¡ xnÒy. It
causes the asymmetry of the satellite peaks at ω � 	εL
and diminishing of the Majorana peak in spin-up sec-
tor. Generally the height of the Majorana peak in the
spectral density of σ-sector is scaled approximately by
� p1 � xnσ̄yq and reaches its maximal value of half con-
ductance quantum in spin-down sector for Θ � 0, which
corresponds to non-interacting dot limit.

In Fig. 3 ZBC dependencies on gate voltage are shown
in the same sequence of panels in as in Fig. 2. Elec-
tron interactions manifest profoundly in these dependen-
cies. Firstly, the height of the conductance peaks for
Θ � π and 0.99π are diminished as compared to quasi-
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non-interacting case of Θ � 0 as a result of damping of
Majorana peak, as discussed above. Secondly, a striking
asymmetry of the conductance peaks can be noticed. It
is caused by the change with Vg of the spectral weight
� p1� xnσ̄yq of the QD spectral density in the σ-sector.
For negative (positive) gate voltages, where the occu-
pancy is very small (reaches 1{2), the spectral weight is
larger (smaller). It is worth to emphasize that Majorana
peak itself remains symmetric with the change of gate
voltage (not shown). The effect of interactions is even
more striking for finite Zeeman splitting, lower panel of
Fig. 3. The peculiar behavior of occupancies at Vg � 0
in this case, namely large value of xnÓy and small value
of xnÒy pushes the spin-up conductance peak, caused by
Majorana state, toward positive gate voltages, whereas
the peak in spin-down sector is shifted toward negative
gate voltages.
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