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Semiconductor quantum dots (QDs) doped with magnetic impurities have been a focus of continuous research
for a couple of decades. A significant effort has been devoted to studies of magnetic polarons (MP) in these
nanostructures. These collective states arise through exchange interaction between a carrier confined in a QD and
localized spins of the magnetic impurities (typically: Mn). Our theoretical description of various MP properties in
self-assembled QDs is discussed. We present a self-consistent, temperature-dependent approach to MPs formed by
a valence band hole. The Luttinger-Kohn k �p Hamiltonian is used to account for the important effects of spin-orbit
interaction.
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1. Introduction

With spintronics and quantum computing as the driv-
ing forces, one of the primary foci of nanomagnetism and
semiconductor spintronics is design and fabrication of
magnetic Quantum Dots (QDs) with customized prop-
erties. These nanostructures, based on Dilute Magnetic
Semiconductors (DMS), are also interesting from a fun-
damental physics point of view; their description requires
a combination of quantum and statistical approaches to
small systems.

Fig. 1. Dilute magnetic semiconductor quantum dot.
(a) Situation without a hole: the Mn ions’ spins point in
random directions. (b) Situation when a hole is confined
in the QD: the Mn ions’ spins align anti-parallel to the
hole spin forming a magnetic polaron.

The magnetic properties of DMS are introduced by
the transition-metal ions (such as manganese) [1]. In
bulk samples of DMS, alignment of Mn spins is typically
achieved through an external magnetic field. An alterna-
tive scenario may be realized in magnetic QDs charged
with carriers. Owing to their strong confinement, the
exchange interaction of these carriers with Mn ions is en-
hanced. This obviates the need of external magnetic field,
replaced by spin-density of the trapped carriers. This
effective internal field may be large enough to strongly
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align the Mn spins [2], resulting in a magnetized quantum
dot, Fig. 1. At the same time, the ground-state energy
of the carrier is lowered, and spin degeneracy of energy
levels is lifted. This combination of effects is referred to
as formation of a magnetic polaron (MP).

Evidence of MP formation is provided by numer-
ous optical experiments on magnetic II-VI QDs embed-
ded in bulk semiconductor, e.g. the early reports in
Refs. [3, 4]. The first time-resolved studies of this effect in
self-assembled DMS QDs were presented in Refs. [5, 6].
Later, formation of magnetic polarons was revealed in
colloidal magnetic QDs [2, 7].

In this work, we present a self-consistent, multiband,
temperature dependent description of hole magnetic po-
larons. We focus on MPs formed by exchange interaction
of a single hole with multiple Mn spins embedded in II-
VI self-assembled QDs, as in the experimental studies of
Refs. [8, 9]. We use the Luttinger-Kohn Hamiltonian to
describe quantum states of the hole. For temperature de-
pendence, we introduce a well-controlled mean-field ap-
proach. This combination of quantum and statistical de-
scriptions allows us to formulate a self-consistency condi-
tion, which reflects the mutual influence of the confined
carrier and localized, paramagnetic Mn spins. Magnetic
polarons are typically formed at cryogenic temperatures.
The corresponding energy gain is destroyed by thermal
fluctuations at higher temperatures. We present results
showing that our method correctly describes this temper-
ature dependence. Our approach, based on the envelope-
function approximation, goes beyond the often employed
“muffin-tin" ansatz for a confined carrier wavefunction.
Thus, we are able to reveal an interesting effect: local-
ization (“shrinking”) of the hole wavefunction in a range
of temperatures in QDs with the above Mn placement.

We note that MP formation is known to occur also in
doped bulk DMS systems. In that case, a carrier bound
to a donor or acceptor aligns the Mn spins within its
effective Bohr radius [10, 11]. This scenario, called bound
magnetic polaron, has similarity to MPs formed in QDs.
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However, the degree of freedom offered by the tunability
of QD confinement is absent in that scenario.

2. Non-magnetic Hamiltonian

We employ the Luttinger-Kohn Hamiltonian to de-
scribe the hole states:

ĤLK �

�
����
P̂ � Q̂ �Ŝ R̂ 0

�Ŝ� P̂ � Q̂ 0 R̂

R̂� 0 P̂ � Q̂ Ŝ

0 R̂� Ŝ� P̂ � Q̂

�
���, (1)

where all the quantities (containing Luttinger parameters
γ1,2,3) and the phase convention are defined in Ref. [12],
Following the typical procedure employed for semicon-
ductor nanostructures, we replace Cartesian components
of wave vector by partial derivatives with respect to po-
sition; (k̂x,y,z � � iBx,y,z) [13].

We take advantage of the envelope function approxi-
mation by adding a confining potential, resulting from
the band offset at semiconductor heterojunctions. We
model the potential by V prqI4, where I4 is the 4 � 4
identity matrix. Thus, V prq is the same for heavy- and
light-holes. It consists of the infinite-well potential in
the growth direction, z, and in-plane parabolic poten-
tial [14]†, 1

2m
�ω2px2 � y2q, where m� � m0

γ1�γ2
is the

in-plane heavy-hole effective mass. Altogether, the non-
magnetic part of the Hamiltonian is Ĥ0 � ĤLK�V prqI4.

3. Self-consistent exchange Hamiltonian

The key element of this work is the non-linear, temper-
ature dependent Schrödinger equation for the effective
carrier wavefunction corresponding to the most probable
spin fluctuation [15]. This equation can be justified as fol-
lows. First, we will consider the Hamiltonian describing
the contact exchange interaction between the fermions
and the magnetic ions. It is convenient to express this
Hamiltonian in the second-quantized form:

Ĥ � Ĥ0 � pβ{3q
¸
j

Ŝjz

�
ψ:
j
Ĵzψj

	
(2)

where ψ:
j
�
�
ψ:j,3{2, ψ

:
j,1{2, ψ

:
j,�1{2, ψ

:
j,�3{2

	
is the four-

component spinor field of a hole with spin J � 3{2, the
spin indexes σ � �3{2 and σ � �1{2 correspond to
heavy-hole and light-hole states respectively, ψ:jσ and ψjσ
are creation and annihilation fermion field operators such
that ψjσ � ψσpRjq where Rj is the location of a mag-
netic ion, β is the exchange coupling constant, and Ŝz and
Ĵz are the Mn (S � 5{2) and the heavy-hole (J � 3{2)
spin operators respectively. The second term in Hamilto-
nian (2) is of Ising type, and is well justified to describe
thermodynamic spin fluctuations and formation of the

†We modify their confinement model by assuming an infinite
band offset in the out-of-plane direction. A finite band offset can
be used in our numerical method at an increased computational
cost, but is not expected to change our results significantly.

heavy-hole magnetic polarons in quasi two-dimensional
quantum dots with strong g-factor anisotropy [16–18]‡.

We take advantage of the fact that the Ising Hamil-
tonian does not contain the double spin-flip processes in
which a hole and a Mn impurity exchange a unit spin. It
means that the system’s wavefunction can be represented
as a product of the hole and Mn-spin parts. The result-
ing hole Hamiltonian depends on the set of c-numbers
Sjz (Mn-spin projections on the z�axis), which repre-
sent a particular state of Mn spins. Second, we assume
that the time evolution of the Mn spin subsystem is slow
enough to treat it as a static non-uniform exchange field
acting upon the hole spins, and consider only the station-
ary states of the thermalized holes for each configuration
of the Mn spin projections. Therefore the partition func-
tion of the system can be calculated using Gibbs canon-
ical distribution:

Z � TrSjz

¸
n

exp

��En ptSjzuq
kBT



, (3)

where kB is the Boltzmann constant, T is temperature,
and n is a quantum number labeling the hole-energy
eigenvalues. The latter depend on all the c-numbers
Sjz � �S, . . . , S. Thus, in order to calculate the par-
tition function in Eq. (3), one would need to solve 6N

replicas of the hole Schrödinger equation, where N is the
number of Mn ions in the QD. This makes the problem
intractable.

To overcome this obstacle, we partition the QD into
a set of Nc blocks (cells), containing few (Nk) Mn spins
(i.e. N � NcNk), and neglect spatial variation of the
hole wavefunction (and the spin density) within each
cell [19]. For a particular cell k with Nk spins, a distribu-
tion function of the average dimensionless magnetization,
µk � S̄

pkq
z , can be expressed as

Y pµkq � Tr
S
pkq
jz
δ

�
µk �N�1

k

¸
j

S
pkq
jz

�
9

exp

��GSpµk{Sq
kBT



, (4)

where the Gibbs free energy of Nk non-interacting spins,
GSpµk{Sq, that can be obtained using the Legendre
transformation, reads

GSpxq � kBT

�Nk
�
xB�1

S pxq � ln
sinh

�p1� 1{2SqB�1
S pxq�

sinh
�p1{2SqB�1

S pxq�
�
.(5)

Here B�1
S pxq is the inverse of the Brillouin function

BSpxq. We note that the distribution function Y pµkq
is temperature independent, i.e. purely entropic.

Using the distribution functions Y pµkq we can trans-
form the partition function of Eq. (3) into a multiple
integral over continuous variables µk:

‡In Ref. [18] x�axis is equivalent to our z�axis.
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Z9
¸
n

» Nc¹
k�1

dµk (6)

� exp

�
�
°
kGSpµk{Sq � Enptµkuq

kBT



.

The expression in parentheses of Eq. 6 contains two
terms: the fermion energy En responsible for the force
exerted by the fermions on the magnetic ions and the
magnetic term

°
kGSpµk{Sq responsible for the restoring

force exerted by the ions on the fermions. The latter, so-
called entropic (or emerging) force has a rather peculiar
origin because it is not derived from any physical inter-
action between the particles, i.e. magnetic ions. Rather
it is caused by the tendency of the system to assume the
state with the maximum entropy. This is precisely why
the magnetic polarons are fundamentally different from
the lattice polarons. The entropic forces can be efficiently
controlled by the temperature, magnetic or even electric
field. On the contrary, the physical control of the lattice
polarons is severely limited.

For any particular n the integral in Eq. 6 can be evalu-
ated using the steepest descent method. The saddle point
equation must be combined with the Hellmann-Feynman
theorem

�βxĴzpkqy
3

� BEnpµ1, . . . , µk, . . . , µNc
q

Bµk ,

where xĴzpkqy � N�1
k

°Nk

j�1xΨ|ψ:j Ĵzψj |Ψy is the average
hole spin density of the cell.

This leads to the non-linear Schrödinger equation [15]:

δxΨ|Ĥ0|Ψy
δΨ

�βS
3

¸
k

NkBS

�
SβxĴzpkqy

3kBT

�
δxĴzpkqy
δΨ

� 0, (7)

Here |Ψy is the state vector corresponding to the most
probable spin fluctuation. The first term in Eq. (7)
is a variational form of the standard non-magnetic
Schrödinger equation while the second term describes
a non-linear and temperature-dependent contribution of
the spin fluctuations induced by the paramagnetic ions.

Analysis of the single magnetic polaron Hamilto-
nian [10, 20] shows that the ordered solution of Eq. (7)
exists at any temperature. It means that the expo-
nent in the integrand of Eq. 6 may be expanded around
the saddle point and the multiple Gaussian integration
with respect to all µk can be carried over. Remark-
ably, the result of this integration coincides with the
exact integral calculated by Wolff [20]. Moreover, one
can generalize this procedure to the case of the Heisen-
berg exchange. The Gaussian integration in this case is
more intricate because the Hamiltonian possesses con-
tinuous rotational symmetry and the expansion of the
exponent in Eq. 6 in the vicinity of the saddle point con-
tains two zero-frequency transverse mode in accordance
with the Goldstone theorem [21, 22]. The proper elim-
ination of the Goldstone modes allows to complete the

Gaussian integration, and the result again agrees with
those of Wolff [20] and Dietl and Spałek [10]. Thus the
free energy of a magnetic polaron calculated by means
of the steepest descent integration replicates the exact
results with no signature of spurious phase transition.
This is because the non-linear Schrödinger equation (7)
contains quantum mechanical rather than thermal aver-
age of the fermion spin density, contrary to the conven-
tional method previously used in many works on mag-
netic quantum dots [23]. The latter approach imposes ar-
tificial thermodynamic limit on a nanoscale system lead-
ing to spurious results. In this case, an attempt to cal-
culate the partition function using the steepest descent
method would lead to a divergence p1�T {Tcq�1{2 in the
vicinity of the critical temperature.

The coarse-grained variables of Eq. (7) can be re-
placed with continuous variables in a standard way.
Thus, the self-consistent approach replaces the Mn spins,
Ŝz, with their thermal average, i.e. with magnetization,
mprq � SBSrSβρsprq{3kBT s, where the spin density
ρsprq � xJzprqy and we replaced coarse-grained cell index
k with a continuous variable r. The exchange Hamilto-
nian reads [15]:

Ĥex � 1

3
xMn |N0β|mprqĴz, (8)

where xMn is the Mn (molar) fraction, and N0 is the
cation (number) density. (The xMn values in this paper
are effective, i.e., assume no antiferromagnetic coupling
between Mn ions.) The quantities mprq and ρsprq must
be found self-consistently using a continuous version of
the nonlinear Schrödinger equation (7):

Ĥ0F prq � xMn

3
|N0β| (9)

�ĴzSBS
�

Sβ

3kBT
F :prqĴzF prq



F prq � E F prq,

where F prq � xr|Ψy is a 4-component spinor:

F prq �

�
����
F3{2 prq
F1{2 prq
F�1{2 prq
F�3{2 prq

�
���� . (10)

4. Numerical approach

We have solved the nonlinear Schrödinger Eq. (9) with
the Finite Difference method. The method discretizes
the Hamiltonian and envelopes F by dividing the QD
into a cubic mesh [24, 25]. Since the mesh lengths are
on order of the crystal lattice spacing, the derivatives of
the envelope functions are well approximated by finite
differences [24]. This numerical method can be used for
any shape of quantum dot, double QDs, and QDs on a
wetting layer [26].

The self-consistent procedure to model the magnetic
polaron follows. We start with the initial magnetiza-
tion mprq � 0, this models mutual cancellation of ran-
dom Mn spins. This magnetization enters the exchange
Hamiltonian, Eq. (8). We use the envelopes resulting
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from Eq. (9) to calculate the local hole spin density,
ρ
piq
s prq � F piq:prqĴzF piqprq, which gives a new magne-

tization [cf Eq.(6) of Ref. [15]]:

mpi�1q prq � SBS

�
Sβρ

piq
s prq

3kBT

�
. (11)

This form of magnetization is similar to the customary
one [27], except that ρs prq replaces the external magnetic
field.

Equation (11) is the self-consistency condition. Our
goal is to solve Eq. (9) using a recursive procedure, which
loops between the magnetization and spin density. When
the magnetization is within a tolerance of the previous
iteration, then the self-consistency loop ends. Our as-
sumption is that after a few iterations, this procedure
finds the actual magnetization and a consistent spin den-
sity.

In brief, the self-consistent algorithm [15] is:

1. Start with zero position-dependent Mn magnetiza-
tion, i.e. mi � 0, where i � 1

2. Employing the finite-difference method, solve
pĤ0 � ĤexpmiqqF piq � EF piq with Ĥex from Eq. (8)
to calculate the next iteration of hole eigenstates
(envelope wavefunctions, Fσ in Eq. (10))

3. Calculate the spin density, ρpiqs , from F piq

4. Calculate mpi�1q in Eq. (11) using ρpiqs

5. Find the maximum, with respect to position, of the
absolute value of differences

��mpiq �mpi�1q
��. If it is

more than a specified tolerance ε, replace mpiq with
mpi�1q in the subsequent iteration, (i Ñ i � 1), go
to point 2

6. Otherwise, the iteration loop ends, effectively solv-
ing the nonlinear Schrödinger equation Eq. (9)

We used ε � 0.5 � 10�3. As a result, we obtain: the
energy of the ground state, its envelopes, and the magne-
tization profile. These quantities indicate MP formation
for suitable system parameter regimes.

5. Self-consistent results

In this section, we present our numerical results ob-
tained using the above approach. Our standard system
is a Cd97%Mn3%Te QD. The parabolic potential is given
by ~ω � 30 meV, corresponding to the in-plane charac-
teristic length, ξ0 �

b
~

m�ω= 4.19 nm, where ~ is the
Dirac constant. The distance between the infinite barri-
ers, i.e., the QD height, is hQD � 3 nm. The Luttinger
parameters are γ1 � 5.3, γ2=1.62, γ3=2.1 [28]. The ex-
change coupling constant, β, is given by |N0β| �
0.88 eV [1].

The energy gain due to the magnetic polaron, EMP, is
defined as the difference between the ground-state (GS)
energy of a non-magnetic and magnetic QD: EMP �

EGSpxMn � 0q � EGSpxMn ¡ 0q. This energy gain is
realized only at low temperatures. At higher tempera-
tures, thermal excitation overcomes the exchange energy
gain and the QD relaxes into gradually approaches a non-
magnetic state. This temperature dependence, as well as
the dependence on xMn is shown in Fig. 2.

Fig. 2. The energy gain from the magnetic polaron,
EMP, for different Mn contents. The MP energy is at
maximum at T � 0 K.

Fig. 3. Mn magnetization profile, mprq, vs. tempera-
ture. At T � 0 K (dotted line), the Mn spins are aligned
and parallel, causing the magnetization to be saturated.
At T � 0.5 K (dashed line), the energy gain from the
aligned Mn spins at the QD center causes the magne-
tization to be saturated only in the QD center, while
the tails of the profile undergo thermal disruption. At
T � 8 K (dot-dashed line), the magnetization is still
evident; at T � 40 K (solid line), the magnetization is
almost lost to temperature.

Figure 3 shows our results for the position-dependent
magnetization mprq. This quantity has a strong tem-
perature dependence. It saturates at m � 5{2 for low
temperatures. The region with saturated m is centered
on the QD center, its volume decreases with increasing
temperature.

Figure 4 demonstrates an interesting effect found in our
simulations: “shrinking" of the dominant GS envelopes in
a temperature range. We quantify the localization effect



Multiband Electronic Structure of Magnetic Quantum Dots: Numerical Studies 347

through the in-plane envelope width

Lmp �
d» ¸

σ

|Fσpx, y, zq|2 px2 � y2qdxdydz. (12)

Because the Mn spins coupled to the tail of the wavefunc-
tion (i.e., on the QD periphery) are more prone to ther-
mal excitation with rising temperature, the wavefunction
localizes to the center, thus maintaining some of the ex-
change energy gain through a stronger alignment of Mn
spins in the central region [19]. Hence, Lmp can be seen
as “MP width", when a magnetic polaron is formed. For
our standard QD, the in-plane envelope localization is 14
times stronger than out-of-plane (defined analogously to
Eq.(12)). The out-of-plane envelope localization is about
1%, thus negligible to our study.

Fig. 4. Calculated dominant heavy-hole envelopes of
the ground state. Each envelope contributes most of
the norm of the corresponding 4-component spinor,
Eq. (10). At T � 0 (dotted line), the wavefunction en-
velope does not localize; its width is very close to that of
the non-magnetic case. The localization effect is strong
at T � 2 K (solid line). At T � 20 K (dashed line), the
envelope starts to relax into a non-magnetic state due
to thermal excitation of the system.

Figure 5 shows the numerical temperature dependence
of Lmp. For clarity, we normalize Lmp to the non-
magnetic width, L8, which is realized at T Ñ 8 or,
equivalently, for xMn Ñ 0. At T � 0, the mixing
of the light- and heavy-holes leads to a small differ-
ence of the envelope with respect to the high T limit:
LmppT � 0q{L8 � 1.003. The zero–T and high–T en-
velopes are exactly equal in the single-band approxima-
tion, where the light- and heavy-holes do not mix, so that
L8 � LmppT � 0q � ξ0.

Increasing temperature significantly reduces magneti-
zation throughout the QD, and thus, any energy stabi-
lization from the envelope localization is reduced. The
system gradually tends to the nonmagnetic state, see
Fig. 5 inset.

6. Delocalization: Mn outside QD
We have shown above that Mn placed in QDs produces

a localization effect on the carrier wavefunction. In the
seminal experiment reported by Seufert et al. [6], as well
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Fig. 5. Localization due to magnetic polaron vs. tem-
perature for a Cd1�xMnxTe QD with x � 3% Mn. The
envelopes exhibit strong localization for temperatures
between 1 and 3 K. Inset: localization decreases at high
temperatures, so the ratio approaches 1.

as others [29], the Mn ions were placed (nominally) out-
side of QDs i.e., in the barrier. What effect will this Mn
position have on the carrier wavefunction confined inside
the QD?

To study this problem, we consider the saturated
regime (T � 0 K), where the Mn spins are fully spin
polarized. We use a use a simple single-band model, in
which the heavy-hole envelope is the ground-state solu-
tion of a 2D harmonic oscillator in the x�y plane, times
a normalized sine along the z�axis (consistent with the
potential assumed in Sec. 5)

FHHpr, zq � (13)

1?
πLmp

e�r
2{2L2

mp

d
2

hQD
sin

�
πz

hQD



,

where r2 � x2�y2. Here, Lmp is the variational parame-
ter, unlike in Sec. 5. We adapt the exchange Hamiltonian
Eq. (8) to the single-band case by replacing Ĵz with J .
We take the cylindrical surface of radius Rcls and height
hQD to be the boundary between the QD and the sur-
rounding layer containing Mn. mprq is assumed homoge-
neous in that layer. Rcls �

?
2ξ0 is the classical turning

radius of the oscillator.
The ground state variational energy of the MP is ob-

tained by calculating the expectation value of the total
Hamiltonian. For a fixed Mn-spin configuration, we ob-
tain

EpLmpq � ~2

2m�L2
mp

� ~2π2

2m�
zh

2
QD

� 1

2
m�ω2L2

mp

�|N0β|xMnSJ

3
e�R

2
cls{L

2
mp , (14)

where the first term is the kinetic energy in the x �
y plane, the second term is the kinetic energy along the
z�axis with effective mass m�

z � m0{ pγ1 � 2γ2q, the
third term is the confinement energy and the last term
is the exchange energy. For details on the derivation of
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Eq. (14) see Refs. [19, 29]. To obtain the optimal width,
we numerically minimize Eq. (14) with respect to Lmp

and obtain an approximate MP wavefunction and en-
ergy. In the limit of no Mn (xMn Ñ 0), we recover the
non-magnetic width (Lmp Ñ ξ0).

Using this model, we find LMP{ξ0 � 1.06, 1.21 and 1.37
for xMn � 1%, 3% and 5%, respectively. Thus, the MP
width increases with increasing xMn. The heavy hole
wavefunction expands to increase the overlap between the
carrier spin and the Mn spins to lower the total energy.
The exchange interaction gives rise to a delocalization
effect.

The delocalization effect can also be studied in QDs
with multiple occupancies. We model this by considering
a 2D QD with harmonic confinement, and occupied by
two heavy holes. As before, the Mn ions are distributed
continuously in the space surrounding the confined re-
gion (R ¥ Rcls). Using the linear variational method, we
numerically diagonalize the QD Hamiltonian (containing
Coulomb interaction) and obtain the heavy hole’s ener-
gies and wavefunction. We found that with increasing
xMn, the electronic density of the ground state delocal-
izes from the QD center to the QD boundary. Using the
above parameters with a relative permittivity ε � 9.3
[28], we find that the weight of the singlet electronic den-
sity outside Rcls to be � 23% for xMn � 0% and � 40%
for xMn � 3%, where half of the Mn spins outside of the
QD point up on one side of the line that divides the QD
in half, and down on the other side of this line. This indi-
cates that it is energetically favorable for the heavy holes
to increase their overlap with the magnetic ions outside
the QD. A comprehensive discussion of our description
of multiply occupied QD is in preparation for a separate
publication.

7. Comparison to experiment

Detailed comparison of results of the self-consistent
method to experimental findings for CdMnTe QDs em-
bedded in a bulk semiconductor is not straightforward.
Magnetic polaron signatures are typically detected in
photoluminescence (PL), where the optical transitions
are between levels derived from the conduction and va-
lence bands. The transition energy, hν, depends on QD
geometry, which typically has significant uncertainties.
One should also take into account the Varshni shift when
analyzing the temperature variation of hν [3]. Moreover,
our calculated EMP values cannot be directly compared
to MP signatures seen in those QDs, where recombi-
nation time is smaller or comparable to MP formation
time [30].

Hence, we can only compare general trends and or-
ders of magnitude of EMP. For example, Maksimov et
al. [3], obtain an estimate of 10.5 meV at T � 2 K for a
Cd0.93Mn0.07Te QD formed by fluctuation of a quantum-
well width. This value corresponds well to the range pre-
sented in Fig. 2, taking into account the different con-

finements§, and the fact that at the nominal xMn � 7%,
some Mn ions are not magnetically active [1].

Kłopotowski et al. obtained EMP from PL of indi-
vidual, self-assembled Cd1�xMnMnxMnTe QDs at T �
8 K [31]. Their values, EMP � 9.4 and 13 meV for
xMn � 3.5% and 20%, respectively, are in the range of
our results (the latter high nominal xMn corresponds to
a much smaller effective xMn).

Finally, we note that the wavefunction “squeezing" has
been seen experimentally for DMS quantum wells [32]¶.

8. Discussion and Conclusion

We have presented preliminary results from a robust
numerical method to calculate electronic and magnetic
properties of self-assembled DMS quantum dots, in which
equilibrium magnetic polarons are formed. The method
is based on a well-controlled mean-field approach. The
obtained values of magnetic polaron binding energy in
function of temperature are in the correct range. Our
method allows to calculate spatial profiles of Mn-ion mag-
netization, as well as localization of wave-function en-
velopes.

To our knowledge, little effort has been devoted so far
to this level of theoretical description of MP formation
in quantum dots, accounting for self-consistency. A sim-
ilar, but not identical, approach has been presented in
Ref. [33]. Results from the two methods seem to differ at
low Mn concentrations, where the approach of Ref. [33]
does not predict lifting of ground state degeneracy. A
detailed comparison requires further calculations. A self-
consistent mean-field model adapted to spherical Quan-
tum Dots has been presented in Ref. [34].

The work presented here does not take into account
such important effects as deformation and piezoelec-
tric potentials, known to influence valence-band states
in QDs. However, such effects can be incorporated in
our method, by adding the corresponding terms to the
non-magnetic Hamiltonian Ĥ0. Here, we concentrate
on the interplay of the typical anisotropic quantum con-
finement, and statistical physics governing magnetism in
DMS QDs.

As a next step of development of the numerical
method, we will consider “delocalization" of envelopes.
Here, we have presented a simulation of this effect by
a simple model for singly-occupied QDs at zero temper-
ature. We have also reported briefly on the prediction
of a related effect in double-occupied QD. This result
has been obtained with a variational method taking into

§To interpret their experimental findings, Maksimov et al. as-
sumed a QD with height = 1 nm, radius 3 nm. Such small dimen-
sions lead to an unusually high ground-state energy.

¶The confinement mechanism of exciton in DMS quantum wells,
proposed by these authors, is different from the scenario consid-
ered here. Hence, the magnitudes of envelope localization cannot
be compared. We note however, that the reported experimental
EMP � 14 meV is of the same order as our results.
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account Coulomb interaction between confined carriers.
The variational method will be discussed in a separate
publication.
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