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Spatially Anisotropic Spin J1 − J2 Heisenberg Model
for an Antiferromagnetic Square Lattice: Phase Diagrams
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The new magnetic materials such as the layered oxide high-temperature superconductor can be well described

by the Heisenberg spin model with nearest-neighbor coupling J1 and next-nearest-neighbor coupling J2. A gener-
alization of the J1 −J2 model is the Jx

1 −Jy
1 −J2 model where the nearest-neighbor bonds have different strengths

Jx
1 and Jy

1 in the x and y directions, respectively. The effect of the couplings J2 and Jy
1 on the antiferromagnetic

Néel state is investigated within the quantum many-body Green function method.
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1. Introduction

The physics of two-dimensional Heisenberg antiferro-
magnet continues to attract considerable attention due
to the discovery and availability of new magnetic mate-
rials such as a new class of iron pnictide superconductors
ΛFe2As2 (Λ = Ba, Ca, Sr) with transition temperature
Tc reaching 55 K [1]. These systems can be well de-
scribed by the spatially anisotropic Jx1 − J

y
1 − J2 Heisen-

berg model with nearest-neighbour (NN) exchanges Jx1
along the x axis, Jy1 along the y axis, and with next-
nearest-neighbour (NNN) exchange J2 along the diago-
nals in the xy plane [2, 3]. The competition between NN
and NNN interactions is characterized by the parame-
ter α = J2/J1, and the spatial anisotropy is character-
ized by the parameter η = Jy/Jx. It is now well known
that the quantum spin- 1

2
antiferromagnetic model on the

square lattice exhibits new types of magnetic order and
novel quantum phases [4, 5]. For J2 = 0 the ground
state is antiferromagnetically ordered at zero tempera-
ture. The addition of next-nearest-neighbor interaction
induces a strong frustration and breaks the antiferro-
magnetic order at some critical value αc. It has been
found that a paramagnetic phase exists between αc1 and
αc2. For α < αc1 the square lattice is antiferromagnet-
ically ordered whereas for α > αc2 a collinear antiferro-
magnetic stripe phase emerges. The effects of quantum
fluctuations due to spatial anisotropy and frustration be-
tween the nearest neighbors and next-nearest neighbors
of the quantum spin- 1

2
Heisenberg antiferromagnet on a

square lattice was investigated within the second-order
spin-wave expansion in [6].

Inelastic magnetic neutron scattering experiments
showed that the Jx1 −J

y
1 −J2 Heisenberg model quite well
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describes spin waves of CaFe2As2 [7]. The spin wave exci-
tation spectrum in the anisotropic Jx1−J

y
1−J2 Heisenberg

model with parameters close to those found in ΛFe2As2
compounds and Néel temperature was calculated within
many-body Green function theory in [8].

We present in this work a study of magnetic phase dia-
grams and the effect of quantum fluctuations on the mag-
netization in the spatially antiferromagnetic Heisenberg
model on the square lattice for various NN and NNN ex-
change interactions. We use the many-body double-time
Green function method for arbitrary spin S [9–11].

2. Model Hamiltonian and method

According to the Mermin–Wagner theorem [12], the
two-dimensional antiferromagnetic Heisenberg model
with exchange interaction alone cannot show finite mag-
netization. In order to obtain finite magnetization,
one can introduce anisotropies. We use the exchange
anisotropy.

Consider the Hamiltonian
H = 1

2

∑
〈ij〉Jij

(S−i S
+
j + Szi S

z
j ) + 1

2

∑
〈ij〉

Dz
ijS

z
i S

z
j , (1)

where the exchange interaction and exchange anisotropy
strengths are positive (Jij > 0 and Dz

ij > 0).
The equation of motion for the Green function

G
(l)
ij (ω) = 〈〈S+

i |(Szj )lS−j 〉〉ω in energy space is written
as

ωG
(l)
ij (ω) = [S+

i , (S
z
j )lS−j ]δij

+〈〈[S+
i , H]|(Szj )lS−j 〉〉ω, (2)

where l ≤ 2S − 1 is integer, necessary for dealing with
higher spin values S.

Using the spin commutator relations, one obtains

[S+
i , H] =

∑
i

Jik(Szi S
+
k −S

z
kS

+
i )−

∑
i

Dz
ikS

z
kS

+
i . (3)

The equation of motion is then

ωG
(l)
ij (ω) = [S+

i , (S
z
j )lS−j ]δij

(206)
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−
∑
k

Dz
ik〈〈SzkS+

i |(S
z
j )lS−j 〉〉ω

+
∑
k

Jik(〈〈Szi S+
k |(S

z
j )lS−j 〉〉ω

−〈〈SzkS+
i |(S

z
j )lS−j 〉〉ω). (4)

We adopt the random phase approximation (RPA) based
on the Tyablikov self-consistent approach for the higher
order of the Green functions occurring on the right-hand
side
〈〈Szi S+

k |(S
z
j )lS−j 〉〉ω ∼= 〈S

z
i 〉〈〈S+

k |(S
z
j )lS−j 〉〉ω,

〈〈SzkS+
i |(S

z
j )lS−j 〉〉ω ∼= 〈S

z
k〉〈〈S+

i |(S
z
j )lS−j 〉〉ω. (5)

This leads to the equation(
ω +

∑
k

(Jik +Dz
ik)〈Szk〉

)
G

(l)
ij (ω)

−〈Szi 〉
∑
k

JikG
(j)
kj (ω) = Z

(l)
ij δij , (6)

where Z(l)
i is the inhomogeneity term

Z
(l)
i ≡ [S+

i , (S
z
i )lS−i ] = 2

〈
(Szi − 1)lSzi

〉
+
〈
{(Szi − 1)l − (Szi )l}{S(S + 1)− Szi − (Szi )2}

〉
. (7)

To describe the antiferromagnetic (AFM) long-range or-
der (LRO) in the square lattice, we consider the Jx1 −
Jy1 −J2 Heisenberg model. We write the Hamiltonian for
the model in the form

H = 1
2

∑
i,j

J1,ijSi · Sj + 1
2

∑
i,j

J2,ijSi · Sj

+ 1
2

∑
i,j

Dz
ijS

z
i S

z
j , (8)

where the lattice sites are denoted by i ≡ ri and j ≡ rj .
The exchange interactions are

J1,ij = Jx1 δrj ,ri±Ax − J
y
1 δrj ,ri±Ay ,

J2,ij = J2δrj ,ri±dxy , (9)
where Jx1 and J1y are the respective nearest-neighbour in-
plane exchange interactions along the x and y axes, J2
is the next-nearest-neighbour interaction along the diag-
onal dxy = Ax ± Ay in the plane. The last term repre-
sents the exchange anisotropy. Taking inelastic magnetic
neutron scattering experiments into account [13, 14], we
assume antiferromagnetic coupling Jx1 > 0 in the x axis
and J2 > 0 in the diagonal, where J2 < Jx. Along the y
axis there is ferromagnetic coupling: Jy1 > 0. For these
interaction values, there is no frustration.

It is convenient to describe the AFM-ordered Néel state
as the two (A,B) sublattice model. The Green function
method for the AFM Heisenberg model for spin S = 1/2
was considered in detail in [15].

We introduce the sublattice indices (im, jn), where
(m,n) = (A,A), (B,A), (A,B) and (B,B). In
the case of the approximation of the two sub-
lattices we have to determine four Green func-
tions that correspond to the four pairs of indices
(m,n): G

(l)
iAJA

(ω) = 〈〈S+
iA
|(SzJA)lS−JA〉〉ω, G

(l)
iBJA

(ω) =

〈〈S+
iB
|(SzJA)lS−JA〉〉ω, G

(l)
iBJA

(ω) = 〈〈S+
iB
|(SzJA)lS−JA〉〉ω,

G
(l)
iAJB

(ω) = 〈〈S+
iA
|(SzJB )lS−JB 〉〉ω, and G

(l)
iBJA

(ω) =

〈〈S+
iB
|(SzJA)lS−JA〉〉ω. As 〈SziB 〉 = −〈SziA〉 for an antifer-

romagnet, the four equations of motion decouple to two
identical pairs of equations, which determine 〈SziA〉 or
〈SziB 〉, respectively. Before replacing 〈SziB 〉 by −〈S

z
iA
〉,

the equations for G(l)
iAjA

and G(l)
iBjA

are

ωG
(l)
iA,jA

+
∑
kA 6=iA

〈SzkA〉[(J2)iAkA +Dz
iAkA ]G

(l)
iAjA

−
∑

kA 6=jA

〈SziA〉(J2)kAjAG
(l)
kAjA

+
∑
kB

〈SzkB 〉[(J
x
1 )iAkB − (Jy1 )iAkB + 2Dz

iAkB ]G
(l)
iAjA

−
∑
kB

〈SziA〉[(J
x
1 )iAkB − (Jy1 )iAkB ]G

(l)
kBjA

= Z
(l)
iA
, (10)

ωG
(l)
iB ,jA

+
∑

kB 6=iB

〈SzkB 〉[(J2)iBkB +Dz
iBkB ]G

(l)
iBjA

−
∑

kB 6=jA

〈SziB 〉(J2)iBjBG
(l)
kBjA

+
∑
kA

〈SzkA〉[(J
x
1 )iBkA − (Jy1 )iBkA + 2Dz

iBkA ]G
(l)
iBjA

−
∑
kA

〈SziB 〉[(J
x
1 )iBkA − (Jy1 )iBkA ]G

(l)
iAjA

= 0. (11)

The Fourier transforms to momentum space for the sub-
lattices each consisting of N/2 lattice sites are

G(l)
mn(q) =

2

n

∑
imjn

G
(l)
imjn

e−q·(Aim−Ajn ),

G
(l)
imjn

=
2

n

∑
q

G(l)
mn(q)eq·(Aim−Ajn ), (12)

2

n

∑
q

e−q·(Aim−Ain ) = δimjn ,

2

n

∑
q

e i (q−q′)·Aim = δqq′ , (13)

where the subscripts (im, jn) in Eqs. (12) and (13) now
denote sublattice indices and not lattice sites. After re-
placing 〈Sz〉B by −〈Sz〉A, the equations for G(l)

AA(q) and
G

(l)
BA(q) are

ω + 〈SzA〉 (J2(0)− J2(q)− [Jx1 (0) + Jy1 (0)])G
(l)
AA(q)

−〈SzA〉[Jx1 (qx)− Jy1 (qy)]G
(l)
BA(q) = ZA, (14)

ω − 〈SzA〉 (J2(0)− J2(q)− (Jx1 (0) + Jy1 (0)))G
(l)
BA(q)

+〈SzA〉(Jx1 (qx)− Jy1 (qy))G
(l)
AA(q) = 0. (15)

We have used the following denotations: (Jx1 )AB =
(Jx1 )BA ≡ Jx1 , (Jy1 )AB = (Jy1 )BA ≡ Jy1 , (J2)AA =
(J2)BB ≡ J2, Dz

AA = Dz
BB = Dz

AB = Dz
BA ≡ Dz,

and J2(0) = 2(J2 + Dz), Jx1 (0) = 2(Jx1 + Dz), Jy1 (0) =
2(−Jy1 +Dz). In this case for a square lattice with lattice
constant a = 1 we have

J2(q) = 4J2 cos(qx) cos(qy), Jx1 (qx) = 2Jx1 cos(qx),

Jy1 (qy) = 2Jy1 cos(qy).
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We express the equations of motions (14), (15) in the
matrix form(

ω + 〈SzA〉[J2(0)− J2(q)− J1(0)] − 〈SzA〉[J1(q)]

〈SzA〉[J1(q)] ω − 〈SzA〉[J2(0)− J2(q)− J1(0)]

)

×

(
G

(l)
AA(q)

G
(l)
BA(q)

)
=

(
Z

(l)
A

0

)
, (16)

where J1(0) = Jx1 (0) + Jy1 (0), J1(q) = Jx1 (qx)− Jy1 (qy).

We obtain from the two equations in (16) the following
Green function G(n)

AA(ω, q):

G
(l)
AA(q) =

{
Z

(l)
A [ω − 〈SzA〉(J2(0)− J2(q)− J1(0)]

}
/∣∣∣∣∣ ω + 〈SzA〉[J2(0)− J2(q)− J1(0)] − 〈SzA〉J1(q)

〈SzA〉J1(q) ω − 〈SzA〉[J2(0)− J2(q)− J1(0)]

∣∣∣∣∣
(17)

with the poles
ω± = ±〈SzA〉[J2(0)− J1(0)]

×

√
1 +

J2
2 (q)− J2

1 (q)− 2J2(q)

J2(0)− J1(0)
.

(18)
From the spectral theorem, after integrating over the first
Brillouin zone, the following equation for the correlation
function 〈(SzA)lS−AS

+
A 〉 for the sublattice A results

〈(SzA)lS−AS
+
A 〉 = Z

(l)
A ΦA, (19)

where
〈(SzA)lS−AS

+
A 〉 ≡ S(S + 1)〈(SzA)l〉 − 〈(SzA)l+1〉

−〈(SzA)l+2〉 (20)
and

ΦA = −1

2
+

1

2π2

∫ π

0

∫ π

0

J2(q)− J2(0) + J1(0)

ω+/〈SzA〉

×coth
ω+

2kT
dqxdqy. (21)

The inhomogeneity term Z
(l)
A is defined by relation (7).

For the spin S = 1/2, the average value of 〈(SzA)2〉 =
1/4 and Eq. (19) with l = 0 provides an equation for the
magnetization 〈SzA〉:

〈SzA〉 =
1

2(1 + 2ΦA)
. (22)

For the spin S = 1, the average value of 〈(SzA)3〉 = 〈SzA〉
and Eq. (19) with l = 0, 1 provides an equation for the
magnetization

〈SzA〉 =
1 + 2ΦA

1 + 3ΦA + 3Φ3
A

. (23)

For the spin S = 3/2, the average value of 〈(SzA)4〉 =
5〈(SzA)2〉/2− 9/16 and Eq. (19) with l = 0, 1, 2 provides
the equation for a magnetization

〈SzA〉 =
1 + 10(ΦA + Φ2

A)

2(1 + 2Φ)[1 + 2(ΦA + Φ2
A)]

. (24)

3. Results

We obtain the saturation sub-lattice magnetization
M(0) for the AF ordered phase with several values of α
and η from (22), (23) and (24) by numerical evaluation.
Figure 1 shows the reduced magnetization M(0)/S for
spin S = 1/2 with increase in the parameter α = J2/J

x
1

for several values of the spatial anisotropy parameter
η = Jy1 /J

x
1 = 0, 0.1, 0.3, 0.45 and d = D/Jx1 = 0.5.

We find that the saturation magnetization steadily de-
creases with increase in the parameter α and then sud-
denly drops to zero at a certain value of the param-
eter αc. The parameter αc decreases with increasing
parameter η. For example (curve (a)), for the pairs
(α < 0.241, η = 0.1) the system is in the AFM LRO,
as can be seen in Fig. 2 where the temperature depen-
dence of magnetizations are plotted for different values
of α = J2/J

x
1 when η = Jy1 /J

x
1 = 0.1. For the pair

(α > 0.241, η = 0.1), the system is in the paramagnetic
state. Saturation magnetizations jump to zero at the
critical values αc = J2c/J

x
1 for each value of η = Jy1 /J

x
1

from the interval: η ∈ 〈0, 0.5).

Fig. 1. The reduced sublattice magnetizationsM(0)/S
for spin S = 1/2 are plotted with increase in the pa-
rameter α = J2/J

x
1 for several values of the ferro-

magnetic spatial anisotropy parameter η = Jy
1 /J

x
1 =

0, 0.1, 0.3, 0.45 and d = 0.5.

Fig. 2. The temperature dependence of sublattice
magnetizations for spin S = 1/2 are plotted for dif-
ferent values of α = J2/J

x
1 = 0, 0.1, 0.2, 0.241 when

η = Jy
1 /J

x
1 = 0.1.

The ground-state magnetization M(0) per spin is re-
duced from its classical value M(0)class by spin fluctua-
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Fig. 3. Spin deviation ∆ = (M(0)−M(0)class)/S from
the classical value is plotted as a function of η(= Jy

1 /J
x
1 )

for the AF ordered phase along the y axis (with no NNN
coupling, i.e. α = 0).

Fig. 4. The reduced sublattice magnetizationsM(0)/S
are plotted for AF ordered phase with frustration for
spin S = 1/2 with increase in the parameter α =
J2/J

x
1 for different values of the antiferromagnetic spa-

tial anisotropy parameter η = Jy
1 /J

x
1 = 0.2, 0.4, 0.6,

0.8, and 1.0.

tions. In Fig. 3 the “spin reduction” (M(0)−M(0)class)/S
is plotted for spins S = 1/2, S = 1 and S = 3/2. The
spin fluctuations increase with values of η and decrease
with increase of spin S. The long-range order disappears
for anisotropy parameter η > 0.5.

The result in the case of frustration, i.e. when Jy1
is the antiferromagnetic coupling, is completely differ-
ent from the case when there is no frustration. This can
be seen in Fig. 4, where the reduced saturation sublat-
tice magnetization M(0)/S with spin S = 1/2 is pre-
sented as a function of the parameter α for AFM LRO
for different values of spatial anisotropy η. Saturation
magnetizations become continuous to zero at the critical
values αc = J2c/J

x
1 for each value of η = Jy1 /J

x
1 from

the interval: η ∈ (0, 1〉. We can see from Fig. 4 that
the spin fluctuations decrease with increasing parameter
anisotropy η. This result is opposite to the case when
there is no frustration.

4. Conclusions

We have employed the Green function theory to cal-
culate the phase diagrams in the spatially anisotropic

antiferromagnetic Jx1 −J
y
1 −J2 Heisenberg model for the

square lattice with arbitrary spins S. We assumed anti-
ferromagnetic couplings: Jx1 > 0 in the x axis, J2 > 0
in the diagonal and a ferromagnetic coupling along the
y axis: Jy1 > 0. For these interaction values, there is no
frustration. In this case, we observed the AFM LRO only
for the parameters α and η from a certain interval. Satu-
ration magnetizations jump to zero at the critical values
αc = J2c/J

x
1 for value of η = Jy1 /J

x
1 only from the inter-

val: η ∈ 〈0, 0.5). The LRO disappears for the anisotropy
parameter η > 0.5. In this case, the spin fluctuations
increase with increase of parameter anisotropy η.

When the exchange coupling along the y axis is anti-
ferromagnetic (Jy1 < 0), then there is frustration. Satu-
ration magnetizations become continuous to zero at the
critical values αc = J2c/J

x
1 for each value of η = Jy1 /J

x
1

from the interval: η ∈ (0, 1〉. In this case, the spin fluc-
tuations decrease with increase of parameter anisotropy
η. This result is opposite to the case when there is no
frustration.
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