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This paper secures soliton solutions to optical couplers in presence of Hamiltonian perturbation terms by the
aid of undetermined coefficients. Both twin core couplers and multiple core couplers are studied. Bright, dark and
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study is focused to the Kerr and power laws of nonlinearity.
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1. Introduction

Optical solitons are visible in various kinds of devices
in the field of nonlinear optics. Some of the most com-
mon areas of visibility are optical fibers, couplers, PCF,
metamaterials and metasurfaces, DWDM systems and
several others [1–20]. There are several results that are
reported in the context of solitons in optical fibers. This
paper will focus on the dynamics of solitons in optical
couplers. There has been quite a few results that are
visible in this area [1, 2, 4, 6–13, 15, 16, 19]. However,
this paper retrieves exact soliton solutions to optical cou-
plers in presence of Hamiltonian perturbation terms by
the method of undetermined coefficients. There are two
forms of nonlinear media that are studied in this paper.
They are Kerr law and power law nonlinearities. Bright,
dark and singular soliton solutions are extracted using
this integration scheme. The existence criteria of these
solitons are also presented which are labeled as constraint
conditions. The details follow through in subsequent sec-
tions.

2. Twin-core couplers

Optical nonlinear couplers have been very useful de-
vices to distribute light from a main fiber into one or
more branch fibers. Couplers also have applications as
intensity-dependent switches and as limiters. They can
be used to multiplex two incoming bit streams onto a
fiber and also to demultiplex a single-bit stream. The
general model that govern the dynamics of nonlinear di-
rectional couplers with constant coefficients is given by:

iqt + iα1qx + a1qxx + b1qxt + F
(
|q|2
)
q

+iΓ1qxxx + iλ1

(
|q|2 q

)
x

+ iξ1 |q|2 qx

+iη1

(
|q|2
)
x
q = k1r (1)

∗corresponding author; e-mail: biswas.anjan@gmail.com

irt + iα2rx + a2rxx + b2rxt + F
(
|r|2
)
r

+iΓ2rxxx + iλ2

(
|r|2 r

)
x

+ iξ2 |r|2 rx

+iη2

(
|r|2
)
x
r = k2q (2)

Here kj for j = 1, 2 are coupling coefficients. Also, in (1)
and (2), the first terms are linear evolutions, while the
coefficients aj and bj , for j = 1, 2, gives group velocity
dispersion (GVD) and spatio-temporal dispsersion (STD)
respectively. The functional F is the dependence on the
generalized form of the refractive index of light pulses.
Again, λj account for self-steepening effect while ξj and
ηj represent nonlinear dispersions. Finally, Γj provides
third order dispersion effect that is considered when GVD
and STD are negligbly small.

We assume solution hypothesis to be of the form
q(x, t) = P1(x, t)e iφ(x,t) (3)

r(x, t) = P2(x, t)e iφ(x,t) (4)
where Pl(x, t) (l = 1, 2) represents the amplitude compo-
nent of the soliton solution while the phase part φ(x, t)
is defined as

φ(x, t) = −κx+ ωt+ Θ . (5)
Here κ is the frequency of the solitons while ω represents
the wave number, and Θ the phase constant. Substitut-
ing (3) and (4) into (1) and (2) and then decomposing
into real and imaginary components gives in a simplified
form
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respectively, with l = 1, 2 and l̄ = 3− l. It is well known
that the profile function Pl(x, t) can be written in the
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form f(x− νt) where the function f represents the soli-
ton wave profile depending the type of nonlinearity, and
ν the soliton speed. From the imaginary part (7) the
soliton speed can be obtain as

ν =
blω + αl − 2alκ

1− blκ
. (8)

after the solvability conditions
Γl = 0 (9)

and
2ηl + ξl + 3λl = 0. (10)

are imposed. By comparing both resulting values of the
soliton speed one can conclude that the coefficients of the
general system (1)–(2) become

a1 = a2, b1 = b2 and α1 = α2. (11)
In view of (11), the speed (8) is rewritten as

ν =
α+ bω − 2aκ

1− bκ
. (12)

regardless the nonlinearity under consideration, while the
real portion (6), takes the following modified form:

a
∂2Pl
∂x2

+ b
∂2Pl
∂x∂t

+ {κ(α+ bω − aκ)− ω}Pl

+κ(ξl + λl)P
3
l + F

(
P 2
l

)
Pl = klPl̄ (13)

The real part equation (13) will be considered in the fol-
lowing subsections in view of two different forms of the
functional F (Pl), they are Kerr and power law nonlinear-
ities.

2.1. Kerr law nonlinearity

When the Kerr law nonlinearity is considered F (s) = s,
and the system (1)–(2) is rewritten as
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in view of (9)–(11). Consequently, the real compo-
nent (13) takes the new form

a
∂2Pl
∂x2

+ b
∂2Pl
∂x∂t

+ {κ(α+ bω − aκ)− ω}Pl

+ {cl + κ(ξl + λl)}P 3
l = klPl̄ (16)

where l = 1, 2 and l̄ = 3 = l. The next subsections will
be devoted to solve (16) for bright, dark and singular
(type-I and type-II) solitons.
2.1.1. Bright solitons

To explore the dynamics of bright soliton propagation
in system (14)–(15), one solve the real part (16) with the
aid of the starting hypothesis for Pl:

Pl = Alsechplτ (17)
where

τ = B(x− νt). (18)
In (17) Al stands for the pulse amplitude while B is the

corresponding inverse width. The substitution of (17)
into (16) leads to{

[κ(α+ bω − aκ)− ω] + p2
l (a− bν)B2

}
Alsechplτ

−klAl̄sech
pl̄τ

−pl(1 + pl)(a− bν)AlB
2sechpl+2τ

+ [cl + κ(ξl + λl)]A
3
l sech

3plτ = 0 (19)
after simplification. Then, applying the balancing prin-
ciple in (19) one obtain

3pl = 2 + pl

leading to
pl = 1 (20)

for l = 1, 2. Setting the coefficients of the resulting lin-
early independent functions sechjτ to zero, for j = 1, 3
leads to the speed and wave numbers of the bright soli-
tons as

ν =
2aB2 − {cl + κ(λl + ξl)}A2

l

2bB2
(21)

and

ω =
2klAl̄ − {cl + κ(λl + ξl)}A3

l − 2κ(α− aκ)Al
2(bκ− 1)Al

(22)

respectively, as long as bκ 6= 1 and bB 6= 0. Moreover,
one can notice by equating both alternative expressions
for the soliton speed ν for l = 1, 2 in (21) the relation
between the amplitudes

A1

A2
=

√
c2 + κ(λ2 + ξ2)

c1 + κ(λ1 + ξ1)
(23)

constrained by
{c2 + κ(λ2 + ξ2)}{c1 + κ(λ1 + ξ1)} > 0. (24)

Following a similar procedure, equating the two expres-
sions for the soliton wave numbers from (22) for l = 1, 2
one obtain a connection between the amplitudes of bright
solitons in the two components as

2k1A
2
2 − {c1 + κ(λ1 + ξ1)}A3

1A2 = 2k2A
2
1

−{c2 + κ(λ2 + ξ2)}A3
2A1. (25)

With the help of (23), by comparing (12) and (21) it is
possible to obtain

Al = B

√
−2 {a(1 + bκ)− b(α+ bω)}

(bκ− 1) {cl + κ(λl + ξl)}
(26)

for l = 1, 2 and l̄ = 3− l whenever the inequality
{a(1 + bκ)− b(α+ bω)} (bκ− 1) {cl + κ(λl + ξl)} < 0.

(27)
holds. Also, by substituting (26) into (25) for both l = 1
and l = 2 one get two possible expressions for the fre-
quency:

κ =
b(α+ bω)− a

ab
(28)

and

κ =
c2k2 − c1k1

(λ1 + ξ1)k1 − (λ2 + ξ2)k2
(29)
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conditioned to

ab 6= 0,
k1

k2
6= (λ2 + ξ2)

(λ1 + ξ1)
(30)

respectively. Thus, we can conclude that the bright soli-
ton solution for the system describing nonlinear direc-
tional couplers in optical metamaterials is given by

q(x, t) = A1sech[B(x− νt)]e i (−κx+ωt+Θ)

r(x, t) = A2sech[B(x− νt)]e i (−κx+ωt+Θ)

where parameters and corresponding constraints are dis-
cussed above.
2.1.2. Dark solitons

To explore the propagation of dark solitons within the
directional couplers (14)–(15), one integrate (16) with the
ansatz

Pl = Al tanhpl τ (31)
where the argument τ is defined as in (18), the pulse am-
plitude still describes by Al, while pl is a free parameter
to be determined throughout the next few lines. The
substitution of (31) into (16) leads to{

[κ(α+ bω − aκ)− ω]− 2p2
l (a− bν)B2

}
Al tanhpl τ

+pl(pl − 1)(a− bν)AlB
2 tanhpl−2 τ

+pl(pl + 1)(a− bν)AlB
2 tanhpl+2 τ

+ [cl + κ(ξl + λl)]A
3
l tanh3pl τ

−klAl̄ tanhpl̄ τ = 0 (32)
The known balance between dispersion and nonlinearity,
as well as the standalone linearly independent function
tanhpl−2 τ leads one to retrieve the value of pl as in (20).
Thus, setting to zero the coefficients of the linearly inde-
pendent functions tanhj τ for j = 1, 3 leads to

ν =
2aB2 + {cl + κ(λl + ξl)}A2

l

2bB2
(33)

and

ω =
klAl̄ − {cl + κ(λl + ξl)}A3

l − κ(α− aκ)

(bκ− 1)Al
. (34)

In (33), after comparing the two resulting waves speeds
v for l = 1, 2 the quotient between amplitudes implies the
same relation as given in (23) and (24). Similarly, com-
paring the two resulting wave functions ω in (34) the
following identity arise:

k1A
2
2 + {c1 + κ(λ1 + ξ1)}A3

1A2 = k2A
2
1

+ {c2 + κ(λ2 + ξ2)}A3
2A1. (35)

By considering (23) and comparing the two possible ex-
pressions for the speed (12) and (33) to each other for
either value of l, yields

Al = B

√
2 {a(1 + bκ)− b(α+ bω)}
(bκ− 1) {cl + κ(λl + ξl)}

(36)

as long as
{a(1 + bκ)− b(α+ bω)} (bκ− 1) {cl + κ(λl + ξl)} > 0.(37)
stay valid. By substituting (36) into (35) for both l = 1

and l = 2 one recalculate (28)–(30). Therefore, the dark
soliton solution for the dispersive twin core couplers with
cubic nonlinearity (14)–(15) is given by

q(x, t) = A1 tanh[B(x− νt)]e i (−κx+ωt+Θ)

r(x, t) = A2 tanh[B(x− νt)]e i (−κx+ωt+Θ) (38)
where the soliton amplitude is described by (36), the
speed and the wave numbers are (33) and (34), while
the frequency is either described by (28) or (29), with
corresponding constraints.

2.1.3. Singular solitons (type-I)
In order to study the propagation dynamics of type-I

singular soliton solutions, the waveform
Pl = Alcschplτ. (39)

is adopted, where Al describes the pulse amplitude, the
parameter pl will be calculated by balancing nonlinear-
ity and dispersion, and the argument τ has been defined
in (18). Direct substitution of (39) into (16) results in{

[κ(α+ bω − aκ)− ω] + p2
l (a− bν)B2

}
Alcschplτ

−klAl̄csch
pl̄τ

+pl(1 + pl)(a− bν)AlB
2cschpl+2τ

+ [cl + κ(ξl + λl)]A
3
l csch

3plτ = 0 (40)
The balancing procedure enable to retrieve the value of
the parameter pl as in (20). After substituting p = 1,
for l = 1, 2 in (40), setting the coefficients of the linearly
independent functions cschjτ for j = 1, 3 to zero allow to
retrieve the soliton speed as for dark soliton (33), while
the wave numbers become

ω =
2klAl̄ + {cl + κ(λl + ξl)}A3

l − 2κ(α− aκ)

2(bκ− 1)Al
. (41)

Equating the resulting two expressions for the soliton
wave in the last equation (41) for l = 1, 2 gives

2k1A
2
2 + {c1 + κ(λ1 + ξ1)}A3

1A2 = 2k2A
2
1

+ {c2 + κ(λ2 + ξ2)}A3
2A1. (42)

Thus, considering (23) and equating the two possible ex-
pressions for the speed (12) and (33) to each other for
either l = 1 or l = 2 yield (36) constrained by (37).
Also substituting (23) and (33)) into (42) provides the
same expressions for κ and corresponding solvability con-
ditions (28)–(30). Consequently, the type-I singular soli-
ton solution for the system (14)–(15) is

q(x, t) = A1csch[B(x− νt)]e i (−κx+ωt+Θ)

r(x, t) = A2csch[B(x− νt)]e i (−κx+ωt+Θ).

This type-I singular soliton solution will persist whenever
the corresponding constrains above discussed are satis-
fied.

2.1.4. Singular solitons (type-II)
To study the propagation dynamics of the second type

of singular solitons within the system (14)–(15), we as-
sume a solution of the form
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Pl = Alcothplτ (43)
where the meaning of the amplitude Al, the argument
τ and the parameter pl is the same as for the previous
starting hypothesis in Kerr nonlinearity. The substitu-
tion of the hypothesis (43) into (16) leads to{

[κ(α+ bω − aκ)− ω]− 2p2
l (a− bν)B2

}
Al cothpl τ

+pl(pl − 1)(a− bν)AlB
2 cothpl−2 τ

+pl(pl + 1)(a− bν)AlB
2 cothpl+2 τ

+ [cl + κ(ξl + λl)]A
3
l coth3pl τ

−klAl̄ cothpl̄ τ = 0. (44)
Balancing principle, as well as the coefficient of the stand
alone element cothpl−2 τ yields the same value of the pa-
rameter pl as in (20). The substitution of the resulting
value of pl into (44) leads to the same results as for dark
solitons (33)–(37) along with corresponding conditions.

Therefore, the type-I singular soliton solution for the
nonlinear system (14)–(15) is of the form

q(x, t) = A1 coth[B(x− νt)]e i (−κx+ωt+Θ)

r(x, t) = A2 coth[B(x− νt)]e i (−κx+ωt+Θ).

where the corresponding parameters as well as con-
straints are the same as for dark solitons.

2.2. Power law nonlinearity

This subsection is dedicated to investigate in detail the
propagation of solitons in the system (1)–(2) under the
influence of power law nonlinearity. In this case, the non-
linear functional has the general form F (s) = sn where
n represents the power law nonlinearity parameter. For
wave stability purposes we are restricted to 0 < n < 2,
strictly imposing n 6= 2 to evade self-focusing singularity.
A starting step is to rewrite the original system (1)–(2)
as

iqt + iα1qx + a1qxx + b1qxt + c1 |q|2n q

+iΓ1qxxx + iλ1

(
|q|2n q

)
x

+ iξ1 |q|2n qx

+iη1

(
|q|2n

)
x
q = k1r (45)

irt + iα2rx + a2rxx + b2rxt + c2 |r|2n r

+iΓ2rxxx + iλ2

(
|r|2n r

)
x

+ iξ2 |r|2n rx

+iη2

(
|r|2n

)
x
r = k2q (46)

By substituting (3) and (4) into (45) and (46), the real
component (13) is transformed into

al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+
{
κ(αl + blω − alκ)− ω − Γlκ

3
}
Pl

+ {cl + κ(ξl + λl)}P 2n+1
l = klPl̄ (47)

while the corresponding imaginary part takes the form

(1− blκ)
∂Pl
∂t

+ (blω + αl − 2alκ− 3Γlκ
2)
∂Pl
∂x

+ {2nηl + ξl + (2n+ 1)λl)}P 2
l

∂Pl
∂x

+Γl
∂3Pl
∂x3

= 0 (48)

As for Kerr nonlinearity, from the last equation (48) one
can retrieve (8) whenever the conditions (9) and

2nηl + ξl + (2n+ 1)λl = 0. (49)
stay valid. Consequently, in this scenario, it is also pos-
sible to retreive (11), and consequently (12). In view of
this constraints the real portion (47) reduces to

a
∂2Pl
∂x2

+ b
∂2Pl
∂x∂t

+ {κ(α+ bω − aκ)− ω}Pl

+ {cl + κ(ξl + λl)}P 2n+1
l = klPl̄ (50)

As for Kerr nonlinearity, the last equation will be in-
tegrated implementing the ansatz approach in the next
few subsections to examine four different forms of soliton
solutions.
2.2.1. Bright solitons

To explore the details of bright soliton propagation on
the system (45)–(46) we adopt the same starting hypoth-
esis as for cubic nonlinearity, e.g. the one given by (17)
jointly with the argument (18). The substitution of (17)
into (50) leads to{

[κ(α+ bω − aκ)− ω] + p2
l (a− bν)B2

}
Alsechplτ

−pl(1 + pl)(a− bν)AlB
2sechpl+2τ

+ [cl + κ(ξl + λl)]A
2n+1
l sech(2n+1)plτ

−klAl̄sech
pl̄τ = 0 (51)

The balance between nonlinearity and dispersion yield
(2n+ 1)pl = pl + 2

from which

pl =
1

n
(52)

for l = 1 and l = 2. Then, after the substitution of (52)
into (51), and setting the coefficients of the linearly inde-

pendent functions sechjτ to zero for j =
1

n
,

2n+ 1

n
one

get

ν =
(n+ 1)aB2 − n2 {cl + κ(λl + ξl)}A2n

l

(n+ 1)bB2
(53)

and
ω =

[
(n+ 1)klAl̄ − {cl + κ(λl + ξl)}A2n+1

l

−(n+ 1)κ(α− aκ)Al
]/
{2(bκ− 1)Al} (54)

respectively, as long as bκ 6= 1 and bB 6= 0 hold. By com-
paring both alternative expressions for the soliton speed
ν for l = 1, 2 in (53) a relation between the amplitudes
takes the form

A1

A2
=

[
c2 + κ(λ2 + ξ2)

c1 + κ(λ1 + ξ1)

] 1
2n

(55)

where l = 1, 2 and l̄ = 3 − l, subject to condition (24).
In a similar manner, equating the two expressions for the
soliton wave numbers from (54) for l = 1, 2 the connec-
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tion between the amplitudes of bright solitons in the two
components is obtained as

(n+ 1)(k1A
2
2 − k2A

2
1) = A1A2

{
[c1 + κ(λ1 + ξ1)]A2n

1

−[c2 + κ(λ2 + ξ2)]A2n
2

}
.

With the aid of (55), comparing (12) and (53) for either
l = 1 or l = 2 yield

Al =

[
− (n+ 1)[a(1 + bκ)− b(α+ bω)]B2

n2(bκ− 1)(cl + κ(λl + ξl)

] 1
2n

as long as the inequality (27) is satisfied. Thus, the bright
soliton solution for the system describing dispersive di-
rectional couplers (45)–(46) with power law nonlinearity
is given by

q(x, t) = A1sech
1
n [B(x− νt)]e i (−κx+ωt+Θ)

r(x, t) = A2sech
1
n [B(x− νt)]e i (−κx+ωt+Θ)

The persistence of these bright soliton solution will be
governed by the conditions discussed above.

2.2.2. Dark solitons
For the dark solitons the guess function to be taken

is the same as in (31). Consequently the real compo-
nent (50) reduces to{

[κ(α+ bω − aκ)− ω]− 2p2
l (a− bν)B2

}
Al tanhpl τ

+pl(pl − 1)(a− bν)AlB
2 tanhpl−2 τ

+pl(pl + 1)(a− bν)AlB
2 tanhpl+2 τ

+ [cl + κ(ξl + λl)]A
2n+1
l tanh(2n+1)pl τ

−klAl̄ tanhpl̄ τ = 0.

In this case the balancing principle allow to retrieve the
value of the parameter pl as in (52). However, the stan-
dalone element tanhpl−2 τ leads to pl as the one given
in (20) forcing n = 1. Consequently the system (45)–
(46) reduces to (14)–(15), and the dark soliton solution
will exist in nonlinear directional couplers whenever the
power law nonlinearity collapses to Kerr law. Subse-
quently, the results for this subsection will be the same as
of dark solitons for cubic nonlinearity (32)–(38) as well.

2.2.3. Singular solitons (type-I)
To investigate the first type of singular soliton solution

of the system (45)–(46), the trial function (39) is again
selected as a possible type-I pulse shape. The chosen
guess reduces the real portion equation (50) into{

[κ(α+ bω − aκ)− ω] + p2
l (a− bν)B2

}
Alcschplτ

+pl(1 + pl)(a− bν)AlB
2cschpl+2τ

+ [cl + κ(ξl + λl)]A
2n+1
l csch(2n+1)plτ

−klAl̄csch
pl̄τ = 0. (56)

By making use of the appropriate balance between dis-
persion and nonlinear terms one get the value of pl as the
one resulting in (52). Thus in (56), from the coefficients

of the linearly independent functions cschjτ for j = 1
n

and j = 2n+1
n , the soliton speed and wave numbers take

the form

ν =
(n+ 1)aB2 + n2 {cl + κ(λl + ξl)}A2n

l

(n+ 1)bB2
(57)

and
ω =

[
(n+ 1)klAl̄ + [cl + κ(λl + ξl)]A

2n+1
l

−{(n+ 1)(α− aκ)κ}Al
]/

2(bκ− 1)Al. (58)
Next, equating the expressions of ν for l = 1, 2 in (57)
leads to the quotient (55), while performing a similar pro-
cedure for ω in (58) yields the identity

(n+ 1)k1A
2
2 + {c1 + κ(λ1 + ξ1)}A2n+1

1 A2

= (n+ 1)k2A
2
1 + {c2 + κ(λ2 + ξ2)}A1A

2n+1
2 .

For this kind of soliton and under power law nonlinearity,
equating (12) and (57) either for l = 1 or l = 2 yield

Al = (59)

1/2n

√
(n+ 1)B2[a(1 + bκ)− b(α+ bω)][cl̄ + κ(λl̄ + ξl̄)]

n2(bκ− 1)[(cl + κ(λl + ξl)(cl̄ + κ(λl̄ + ξl̄)]

after considering (55), and the inequality (37) holds.
Therefore, the type-I singular soliton solution for the sys-
tem (45)–(46) is

q(x, t) = A1csch1/n[B(x− νt)]e i (−κx+ωt+Θ)

r(x, t) = A2csch1/n[B(x− νt)]e i (−κx+ωt+Θ)

where the parameters with corresponding constraints are
summarized in (56)–(59).
2.2.4. Singular solitons (type-II)

Type-II singular soliton solution is the last kind of soli-
tons to be considered for the system with power law non-
linearity (45)–(46). In order to solve the system under
consideration, the substitution of the starting hypothesis
given by (43) reduces (50) into{

[κ(α+ bω − aκ)− ω]− 2p2
l (a− bν)B2

}
Al cothpl τ

+pl(pl − 1)(a− bν)AlB
2 cothpl−2 τ

+pl(pl + 1)(a− bν)AlB
2 cothpl+2 τ

+ [cl + κ(ξl + λl)]A
2n+1
l coth(2n+1)pl τ

−klAl̄ cothpl̄ τ = 0.

As expected, the balancing principle yield the same
value of pl as in (52). However, the stand alone ele-
ment cothpl−2 τ leads to pl = 1. Consequently, the sys-
tem (45)–(46) reduces to (14)–(15), and the type-II sin-
gular soliton solution will exist in dispersive nonlinear
directional couplers whenever the power law nonlinearity
collapses to Kerr law, as as we found for dark solitons. As
a consequence, the results for this subsection will be the
same as of singular type-II solitons for cubic nonlinearity
(33)–(37).
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3. Multiple-core couplers (coupling with nearest
neighbors)

The proposed model describing dispersive optical soli-
tons in multiple-core couplers, while coupling with near-
est neighbors, is given by

iq
(l)
t + iαlq

(l)
x + alq

(l)
xx + blq

(l)
xt + F

(∣∣∣q(l)
∣∣∣2) q(l)

+iΓlq
(l)
xxx + iλl

(∣∣∣q(l)
∣∣∣2 q(l)

)
x

+ iξl

∣∣∣q(l)
∣∣∣2 q(l)

x

+iηl

(∣∣∣q(l)
∣∣∣2)

x

q(l) = K
[
q(l−1) − 2q(l) + q(l+1)

]
(60)

where 1 ≤ l ≤ N . Equation (60) represents the general
model for optical couplers where coupling with nearest
neighbors is considered. For this model, K will be act-
ing as the coupling coefficient. In order to address this
model for the two forms of nonlinear media (Kerr and
power Law), the initial hypothesis is taken to be

q(l)(x, t) = Pl(x, t)e iφ(x,t) (61)
where Pl keeps the same amplitude meaning as before,
while φ is the phase component and is again defined as
in (5). By substituting the ansatz (61) into (60), the
resulting expression is separated into the real and imag-
inary parts. The resulting imaginary portion is identi-
cal to (7), and as a direct consequence, one retrieve the
soliton speed (8) jointly with solvability conditions (9)
and (10) regardless any of the two nonlinearities to be
taken into consideration. In addition, the real part takes
the following updated form

al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+ {κ(αl + bω − alκ)− ω}Pl (62)

+κ(ξl + λl)P
3
l + F

(
P 2
l

)
Pl = K[Pl−1 − 2Pl + Pl+1]

in view of (9). These last equation will be analyzed for
four different types of solitons in view of cubic and power
law nonlinear forms.

3.1. Kerr law nonlinearity

In the case of Kerr law nonlinearity, the system (60)
modifies to

iq
(l)
t + iαlq

(l)
x + alq

(l)
xx + blq

(l)
xt + cl

∣∣∣q(l)
∣∣∣2 q(l)

+iΓlq
(l)
xxx + iλl

(∣∣∣q(l)
∣∣∣2 q(l)

)
x

+iξl

∣∣∣q(l)
∣∣∣2 q(l)

x + iηl

(∣∣∣q(l)
∣∣∣2)

x

q(l) = K
[
q(l−1) − 2q(l) + q(l+1)

]
.(63)

In view of the ansatz (61) considered herein, the real part
equation (62) is rewritten as

al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+ {κ(αl + bω − aκ)− ω}Pl

+ {cl + κ(ξl + λl)}P 3
l =

K[Pl−1 − 2Pl + Pl+1] (64)
The equation (64) will be further split into four subsec-
tions depending on the type of soliton that is being con-
sidered.

3.1.1. Bright solitons
When studying the dynamics of bright solitons in sys-

tem (64), the starting hypothesis to be taken is given by
Pl = Alsechpτ (65)

where the argument is defined by
τ = B(x− νt),

p is a parameter to be determined, while Al and B dic-
tates the soliton amplitude and inverse width respec-
tively. The substitution of the hypothesis (65) in (64)
convert the last into{

[κ(αl + blω − alκ)− ω] + p2(al − blν)B2
}
Alsechpτ

−p(1 + p)(al − blν)AlB
2sechp+2τ

+ [cl + κ(ξl + λl)]A
3
l sech

3pτ

−K(Al−1 − 2Al +Al+1)sechpτ = 0

The expected balancing principle gives
p = 1. (66)

Then, after setting the coefficients of the linearly inde-
pendent functions to zero yields the waves number

ω =

2K(Al−1 − 2Al +Al+1)− ΓlA
3
l − 2κ(αl − alκ)Al

2(blκ− 1)Al
, (67)

and the soliton speed

ν =
2alB

2 − ΓlA
2
l

2blB2
, (68)

where Γl = cl + κ(λl + ξl). Next, equating the two ex-
pressions of the soliton speed ν, (8) and (68) results in

B = (69)√
(blκ− 1)2ΓlA3

l

2alAl + bl{2blK(Al−1 − 2Al +Al+1)− 2αlAl − blΓlA3
l }

in view of (67), as long as
ΓlA

3
l [2alAl + bl{2blK(Al−1 − 2Al +Al+1)

−2αlAl − blΓlA3
l }
]
> 0

Hence, the bright soliton solution to the system (63) is
q(l)(x, t) = Alsech[B(x− νt)]e i (−κx+ωt+Θ)

where the amplitude and the inverse width are related
in (69), and the soliton speed can be either (8) or (68),
as long as the corresponding conditions hold.

3.1.2. Dark solitons
To study dark solitons solution on the system (63), we

assume a solution of the form
Pl = Al tanhp τ. (70)

The substitution of (70) into (64) leads to
{[κ(αl + blω − alκ)− ω]

−2p2(al − blν)B2
}
Al tanhp τ

+p(p− 1)(al − blν)AlB
2 tanhp−2 τ
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+p(p+ 1)(al − blν)AlB
2 tanhp+2 τ

+ [cl + κ(ξl + λl)]A
3
l tanh3p τ

−K(Al−1 − 2Al +Al+1) tanhp τ = 0

The balancing principle, as well as the standalone linearly
independent function tanhpl−2 τ leads one to retrieve the
value of the parameter p given in (66). Thus, setting to
zero the coefficients of the linearly independent functions
tanhj τ for j = 1, 3 leads to the speed of the soliton

ν =
2alB

2 + [cl + κ(λl + ξl)]A
2
l

2blB2
(71)

and the wave number
ω =

[
K(Al−1 − 2Al +Al+1)− {cl + κ(λl + ξl)}A3

l

−κ(αl − alκ)Al
]/

(blκ− 1)Al. (72)
By comparing (8) and (71), the soliton amplitude and
inverse width are associated through

B = (73)√
(blκ− 1)2ΓlA3

l

2alAl + 2bl{blK(Al−1 − 2Al +Al+1)− αlAl − blΓlA3
l }

after considering (72), whenever the corresponding radi-
cand is positive. Therefore, the dark soliton solution to
the system (63) is

q(l)(x, t) = Al tanh[B(x− νt)]e i (−κx+ωt+Θ) (74)
where the parameters along with corresponding con-
straints were discussed above.

3.1.3. Singular solitons (type-I)

For type-I singular soliton the ansatz is of the form
Pl = Alcschpτ. (75)

Substituting (75) into (64) generates{
[κ(αl + blω − alκ)− ω] + p2(al − blν)B2

}
Alcschpτ

+p(1 + p)(al − blν)AlB
2cschp+2τ

+ [cl + κ(ξl + λl)]A
3
l csch

3pτ

−K(Al−1 − 2Al +Al+1)cschpτ = 0. (76)
after simplification. Once again the balance between non-
linearity and dispersion leads to the value of p obtained
in (66). After substituting p = 1 in the expression (76),
and setting the coefficients of the linearly independent
functions cschjτ for j = 1, 3 to zero allow to retrieve the
same soliton speed as for dark soliton (71), but the wave
number becomes:

ω =
[
2K(Al−1 − 2Al +Al+1) + ΓlA

3
l − 2κ(αl − alκ

]
/

2(blκ− 1)Al. (77)
where Γl = cl+κ(λl+ξl). Next, comparing the speeds (8)
and (71), and using (77) leads to

B =

√
−

(blκ− 1)2ΓlA3
l

2alAl + bl{2blK(Al−1 − 2Al +Al+1)− 2αlAl + blΓlA3
l }

provided
ΓlA

3
l [2alAl + bl{2blK(Al−1 − 2Al +Al+1)

−2αlAl + blΓlA
3
l }
]
< 0

Thus the type-I singular soliton solution to the sys-
tem (63) is

q(l)(x, t) = Alcsch[B(x− νt)]e i (−κx+ωt+Θ)

where the parameters along with corresponding con-
straints are discussed as above.
3.1.4. Singular solitons (type-II)

For the second type of singular soliton solution of the
system (63) we assume a solution of the following form,

Pl = Al cothp τ (78)
and substitute the same in the real part (64) to obtain
{[κ(αl + blω − alκ)− ω]

−2p2(al − blν)B2
}
Al cothp τ

+p(p− 1)(al − blν)AlB
2 cothp−2 τ

+p(p+ 1)(al − blν)AlB
2 cothp+2 τ

+ [cl + κ(ξl + λl)]A
3
l coth3p τ

−K(Al−1 − 2Al +Al+1) cothp τ = 0. (79)
Notice that the coefficient of the stand alone element
cothpl−2 τ yields the same value of the parameter p as
in (66). The balancing principle yields unity as well.
Thus, the substitution of p = 1 into (79) leads to the
same results as for dark solitons (71)–(73) together with
corresponding conditions. Therefore, the type-II singu-
lar soliton solution for the nonlinear system (63) has the
form

q(l)(x, t) = Al coth[B(x− νt)]e i (−κx+ωt+Θ)

with parameters along with corresponding constraints are
the same as for dark soliton in the case of multiple-core
couplers when coupling with the nearest neighbors with
Kerr law nonlinearity.

3.2. Power law nonlinearity
When considering power law nonlinearity the sys-

tem (60) is rewritten as

iq
(l)
t + iαlq

(l)
x + alq

(l)
xx + blq

(l)
xt + cl

∣∣∣q(l)
∣∣∣2n q(l)

+iΓlq
(l)
xxx + iλl

(∣∣∣q(l)
∣∣∣2n q(l)

)
x

+ iξl

∣∣∣q(l)
∣∣∣2n q(l)

x

+iηl

(∣∣∣q(l)
∣∣∣2n)

x

q(l) = K
[
q(l−1) − 2q(l) + q(l+1)

]
(80)

In this context, the substitution of the starting hypoth-
esis (61) into (80) leads to retrieve the same imaginary
part we got on (48), thus one can retrieve (8) whenever
the conditions (9) and (49) hold. Consequently, the re-
sulting real part can be rewritten as
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al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+ {κ(αl + blω − alκ)− ω}Pl

+ {cl + κ(ξl + λl)}P 2n+1
l =

K[Pl−1 − 2Pl + Pl+1]. (81)
The equation (81) will be further split into four subsec-
tions depending on the type of soliton that is being con-
sidered.

3.2.1. Bright solitons
To investigate the bright soliton propagation on the

system (80) we adopt the ansatz (65), and substitute the
same into (81) to obtain{

[κ(αl + blω − alκ)− ω] + p2(al − blν)B2
}
Alsechpτ

−p(1 + p)(al − blν)AlB
2sechp+2τ

+ [cl + κ(ξl + λl)]A
2n+1
l sech(2n+1)pτ

−K[Al−1 − 2Al +Al+1]sechpτ = 0 (82)
By comparing dispersion and nonlinearity in the last one
leads to

(2n+ 1)p = p+ 2

from which

p =
1

n
. (83)

The substitution of (83) into (82), and setting the coef-
ficients of the linearly independent functions sechjτ to
zero generates the soliton speed

ν =
(n+ 1)alB

2 − n2ΓlA
2n
l

(n+ 1)blB2
, (84)

where by convenience we have defined Γl = cl+κ(λl+ξl),
and the wave number

ω =
[
(n+ 1)K(Al−1 − 2Al +Al+1)− ΓlA

2n+1
l

−(n+ 1)κ(αl − alκ)Al
]/

(n+ 1)(blκ− 1)Al, (85)
whenever bκ 6= 1 and bB 6= 0. Then, after comparing
the two possible expressions of the soliton speed ν, (8)
and (84) one obtain

B = (86)√√√√ n2(blκ− 1)2ΓlA
2n+1
l

(n+ 1)[(al − blαl)Al + b2lK(Al−1 − 2Al + Al+1)]− b2l ΓlA
2n+1
l

Therefore the bright 1-soliton solution is given by

q(l)(x, t) = Alsech
1
n [B(x− νt)]e i (−κx+ωt+Θ)

where the association between the amplitudes and the in-
verse width is depicted in (86), the soliton speed can be
either (8) or (84), and the wave number is defined in (85).
The corresponding constraints have to be satisfies in or-
der for the soliton to propagate within the directional
couplers described by the system (80).

3.2.2. Dark solitons
For dark soliton the starting hypothesis is as in (70),

and its substitution in (81) prompt to{
[κ(αl + blω − alκ)− ω]− 2p2(al − blν)B2

}
Al tanhp τ

+p(p− 1)(al − blν)AlB
2 tanhp−2 τ

+p(p+ 1)(al − blν)AlB
2 tanhp+2 τ

+ [cl + κ(ξl + λl)]A
2n+1
l tanh(2n+1)p τ

−K(Al−1 − 2Al +Al+1) tanhp τ = 0.

The balance between dispersion and nonlinearity leads
to the value of the parameter p as in (83). On the other
hand, the standalone element tanhp−2 τ leads to p = 1,
therefore n = 1. As a direct consequence, the system
with power law nonlinearity (80) collapses to the one with
Kerr law (63), whose results were discussed in (71)–(73).
3.2.3. Singular solitons (type-I)

For singular type-I soliton solution we adopt and sub-
stitute the waveform (75) into (81) giving{

[κ(αl + blω − alκ)− ω] + p2(al − blν)B2
}
Alcschpτ

+p(1 + p)(al − blν)AlB
2cschp+2τ

+ [cl + κ(ξl + λl)]A
2n+1
l csch(2n+1)pτ

−K(Al−1 − 2Al +Al+1)cschpτ = 0.

Balancing principle leads the same value of p as in (83).
Thus, from the linearly independent function, the speed
and wave number are

ν =
(n+ 1)alB

2 + n2ΓlA
2n
l

(n+ 1)blB2
(87)

and
ω =

[
(n+ 1)K(Al−1 − 2Al +Al+1) + ΓlA

2n+1
l

−(n+ 1)κ(α− aκ)
]/

(n+ 1)(blκ− 1)Al.

respectively, where we have define by convenience Γl =
cl + κ(ξl + λl). A direct comparison of the soliton
speeds (8) and (87) leads to

B =√√√√ n2(blκ− 1)2ΓlA
2n+1
l

(n+ 1)[(al − blαl)Al + b2lK(Al−1 − 2Al + Al+1)] + b2l ΓlA
2n+1
l

subject to
ΓlA

2n+1
l × {(n+ 1)[(al − blαl)Al

+b2lK(Al−1 − 2Al +Al+1)] + b2l ΓlA
2n+1
l

}
> 0

Therefore the singular type-I soliton solution to (80) is

q(l)(x, t) = Alcsch
1
n [B(x− νt)]e i (−κx+ωt+Θ)

where the amplitude, inverse width, speed, and wave
number are presented above together with correspond-
ing solvability conditions.
3.2.4. Singular solitons (type-II)

For power law nonlinearity, the last waveform to be
studied in multiple-core couplers when coupling with
nearest neighbors is the singular type-II, for which the
starting hypothesis to be taken is the same as for the
case of cubic nonlinearity, (70). Then, the waveform (70)
reduces (81) to
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[κ(αl + blω − alκ)− ω]− 2p2(al − blν)B2

}
Al cothp τ

+p(p− 1)(al − blν)AlB
2 cothp−2 τ

+p(p+ 1)(al − blν)AlB
2 cothp+2 τ

+ [cl + κ(ξl + λl)]A
2n+1
l coth(2n+1)p τ

−K(Al−1 − 2Al +Al+1) cothp τ = 0.

By balancing principle the parameter p takes the same
value as in (83), but the standalone element cothp−2 τ
leads to p = 1. Thus, equating both values of p makes
n = 1. Consequently, for the type-2 singular soliton solu-
tion, the system with power law nonlinearity (80) reduces
to the system with Kerr nonlinearity (63), whose results
were discussed through (71)–(73) together with the corre-
sponding constraints. Finally, the type-II singular soliton
solution for the nonlinear system (63) has the form

q(l)(x, t) = Al coth[B(x− νt)]e i (−κx+ωt+Θ)

where parameters along with corresponding constraints
are the same as for dark soliton in the case of multiple-
core couplers when coupling with the nearest neighbors
with Kerr law nonlinearity.

4. Multiple-core couplers
(coupling with all neighbors)

The governing system for multiple core couplers, where
the coupling is with all neighbors, is

iq
(l)
t + iαlq

(l)
x + alq

(l)
xx + blq

(l)
xt + F

(∣∣∣q(l)
∣∣∣2) q(l)

+iΓlq
(l)
xxx + iλl

(∣∣∣q(l)
∣∣∣2 q(l)

)
x

+ iξl

∣∣∣q(l)
∣∣∣2 q(l)

x

+iηl

(∣∣∣q(l)
∣∣∣2)

x

q(l) =

N∑
n=1

δlnq
(n) (88)

where 1 ≤ l ≤ N and δln represents the coupling coeffi-
cient with all neighbors. The initial hypothesis is taken
to be the same as given by (61). Thus, the substitu-
tion of (61) into (88) allow to split into imaginary and
real parts. The imaginary part is the same as (7), there-
fore one retrieve the soliton speed (8) subject to con-
straints (9) and (10) regardless any of the two nonlinear-
ities (Kerr and power law) to be taken into consideration
throughout the rest of the manuscript. Meanwhile, the
real part takes the form

al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+ [κ(αl + blω − alκ)− ω]Pl

+κ(ξl + λl)P
3
l + F

(
P 2
l

)
Pl =

N∑
n=1

δlnPn.

For the remaining of this work, the last expression will
be studied in view of both nonlinearities as follow.

4.1. Kerr law nonlinearity
If we first take into consideration the Kerr nonlinearity,

the system (88) can be rewritten as

iq
(l)
t + iαlq

(l)
x + alq

(l)
xx + blq

(l)
xt + cl

∣∣∣q(l)
∣∣∣2 q(l)

+iΓlq
(l)
xxx + iλl

(∣∣∣q(l)
∣∣∣2 q(l)

)
x

+ iξl

∣∣∣q(l)
∣∣∣2 q(l)

x

+iηl

(∣∣∣q(l)
∣∣∣2)

x

q(l) =

N∑
n=1

δlnq
(n). (89)

The substitution of the starting hypothesis (61)
into (89) generates the same imaginary part we got
on (48), and as a direct consequence, one can retrieve (8)
whenever the conditions (9) and (10) are satisfied. In
this context, the resulting real part can be rewritten as

al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+ {κ(αl + blω − alκ)− ω}Pl

+ {cl + κ(ξl + λl)}P 3
l =

N∑
n=1

δlnPn. (90)

The equation (90) will be further split into four subsec-
tions depending on the type of soliton that is being con-
sidered.

4.1.1. Bright solitons
For bright solitons, the hypothesis given by (65) sim-

plifies the real part equation (90) to{
[κ(αl + blω − alκ)− ω] + p2(al − blν)B2

}
Alsechpτ

−p(1 + p)(al − blν)AlB
2sechp+2τ

+ [cl + κ(ξl + λl)]A
3
l sech

3pτ = sechpτ
N∑
n=1

δlnAn(91)

where the balancing principle leads to p = 1. Inserting
such value of p in (91), and setting the coefficients of the
linearly independent functions sechjτ, j = 1, 3 to zero
leads to the soliton wave number

ω =

−ΓlA3
l − 2κ(αl − alκ)Al + 2

N∑
n=1

δlnAn

2(blκ− 1)Al
, (92)

where Γl = cl + κ(λl + ξl) while the speed (68) is re-
trieved, which after comparing with its equivalent (8),
one get

B =

Al

√√√√√ (blκ− 1)2ΓlAl

2alAl − bl
{

2αlAl + blΓlA3
l − 2bl

N∑
n=1

δlnAn

}
in the context of (92), in addition to the constraints

ΓlAl

[
2alAl − bl

{
2αlAl + blΓlA

3
l − 2bl

N∑
n=1

δlnAn

}]
> 0

and
(blκ− 1)Al 6= 0. (93)

Thus, we can deduce that the bright soliton solution to
the system (89) is

q(l)(x, t) = Alsech[B(x− νt)]e i (−κx+ωt+Θ)

where the parameters with corresponding solvability con-
ditions that secure the persistence of such soliton are dis-
cussed above.
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4.1.2. Dark solitons
To explore dark soliton solution of the nonlinear

system (89) we start by assuming a solution of the
form (70). The substitution of such guess into (90)
transform the last into{
[κ(αl + blω − alκ)− ω]− 2p2(al − blν)B2

}
Al tanhp τ

+p(p− 1)(al − blν)AlB
2 tanhp−2 τ

+p(p+ 1)(al − blν)AlB
2 tanhp+2 τ

+ [cl + κ(ξl + λl)]A
3
l tanh3p τ =

tanhp τ

N∑
n=1

δlnAn (94)

The standalone linearly independent function tanhpl−2 τ
leads one to retrieve the value p = 1, while the balancing
principle yields the same. Setting to zero the coefficients
of the linearly independent functions tanhj τ for j = 1, 3
leads to the speed of the soliton (71), and the wave
number

ω =

−ΓlA3
l − κ(αl − alκ)Al +

N∑
n=1

δlnAn

(blκ− 1)Al
. (95)

with Γl = cl + κ(λl + ξl). As before, if we compare
both possible expressions for the soliton speed (8)
and (71), one can define the inverse width in terms of
the amplitude by

B =

√√√√√ (blκ− 1)2ΓlA3
l

2alAl − 2bl

{
αlAl + blΓlA3

l − bl
N∑
n=1

δlnAn

}
by virtue of (95), whenever the corresponding radicand
stay positive, e.g. (93) and

ΓlA
3
l

[
alAl − bl

{
αlAl + blΓlA

3
l − bl

N∑
n=1

δlnAn

}]
> 0 (96)

stay valid. Finally, the dark soliton solution to the
system (89) is

q(l)(x, t) = Al tanh[B(x− νt)]e i (−κx+ωt+Θ)

where the definition of each of the parameters and cor-
responding constraints have been discussed above.
4.1.3. Singular solitons (type-I)

For the first type of singular soliton in multiple core
couplers with cubic nonlinearity, the starting hypothe-
sis (75) simplifies the real part (90) to{

[κ(αl + blω − alκ)− ω] + p2(al − blν)B2
}
Alcschpτ

+p(1 + p)(al − blν)AlB
2cschp+2τ

+ [cl + κ(ξl + λl)]A
3
l csch

3pτ = cschpτ
N∑
n=1

δlnAn.

(97)

The balance between nonlinearity and dispersion yields
again p = 1. After substituting the resulting value of p
in the expression (97), and then setting the coefficients of
the linearly independent functions cschjτ for j = 1, 3 to
zero allow to retrieve the same expression for the soliton
speed as for dark soliton (71), while an expression for for
the wave number is,

ω =

ΓlA
3
l − 2κ(αl − alκ) + 2

N∑
n=1

δlnAn

2(blκ− 1)Al
. (98)

with Γl = cl + κ(λl + ξl). Next, comparing both
speeds (8) and (71), and taking into consideration (98),
the inverse width can be written in terms of the ampli-
tude as

B = (99)√√√√√− (blκ− 1)2ΓlA3
l

2alAl − bl
{

2αlAl − blΓlA3
l − 2bl

N∑
n=1

δlnAn

}
as long as

ΓlA
3
l

[
2alAl − bl

{
2αlAl − blΓlA3

l − 2bl

N∑
n=1

δlnAn

}]
< 0.

Thus, we can conclude that the type-I singular soliton
solution to the system (89) is

q(l)(x, t) = Alcsch[B(x− νt)]e i (−κx+ωt+Θ)

where the speed can be consider as either (8) or (71), the
wave number (98), and the relation between the inverse
width and the amplitude by (99), all of these in view of
the corresponding constraints explained above.

4.1.4. Singular solitons (type-II)
The last kind of soliton to be study for the case of

Kerr law nonlinearity is the second type of singular soli-
ton solution. In order to proceed, we first substitute the
ansatz (78) into the real part equation (90), generating{

[κ(αl + blω − alκ)− ω]− 2p2(al − blν)B2
}
Al cothp τ

+p(p− 1)(al − blν)AlB
2 cothp−2 τ

+p(p+ 1)(al − blν)AlB
2 cothp+2 τ

+ [cl + κ(ξl + λl)]A
3
l coth3p τ

− cothp τ
N∑
n=1

δlnAn = 0. (100)

The coefficient of the stand alone element cothpl−2 τ as
well as the balancing principle yield p = 1. By substitut-
ing the resulting value of p into (100) leads to the same
results as for dark solitons (95)–(96), altogether with cor-
responding conditions. Therefore, the type-II singular
soliton solution for the nonlinear system (89) is

q(l)(x, t) = Al coth[B(x− νt)]e i (−κx+ωt+Θ)

where parameters and corresponding constraints are the
same as for dark soliton in the case of multiple-core cou-
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plers when coupling with the all neighbors with Kerr law
nonlinearity.

4.2. Power law nonlinearity

The last nonlinearity to be considered for core couplers
coupling with all neighbors is power law. Under this non-
linearity the system (88) takes the new form

iq
(l)
t + iαlq

(l)
x + alq

(l)
xx + blq

(l)
xt + cl

∣∣∣q(l)
∣∣∣2n q(l)

+iΓlq
(l)
xxx + iλl

(∣∣∣q(l)
∣∣∣2n q(l)

)
x

+ iξl

∣∣∣q(l)
∣∣∣2n q(l)

x

+iηl

(∣∣∣q(l)
∣∣∣2n)

x

q(l) =

N∑
n=1

δlnq
(n). (101)

The substitution of the guess hypothesis (61) into (101)
leads to retrieve the same imaginary part we got on (48),
consequently the speed ν as in (8) whenever the condi-
tions (9) and (49) are satisfied. The resulting real part
can be rewritten as

al
∂2Pl
∂x2

+ bl
∂2Pl
∂x∂t

+ [κ(αl + blω − alκ)− ω]Pl

+[cl + κ(ξl + λl)]P
2n+1
l =

N∑
n=1

δlnPn. (102)

The equation (102) will be further split into four sub-
sections depending on the type of soliton that is being
considered.
4.2.1. Bright solitons

To investigate the bright soliton dynamics on the sys-
tem (101), we begin by inserting the waveform (65)
into (102), yielding{

[κ(αl + blω − alκ)− ω] + p2(al − blν)B2
}
Alsechpτ

−p(1 + p)(al − blν)AlB
2sechp+2τ

+ [cl + κ(ξl + λl)]A
2n+1
l sech(2n+1)pτ

−

(
N∑
n=1

δlnAn

)
sechpτ = 0. (103)

Balancing principle allows one to compare dispersion and
nonlinearity in (103), thus (2n+ 1)p = p+ 2 from which
we can obtain the value of the parameter p as in (83).
The substitution of the resulting value of p into (103),
and setting the coefficients of the linearly independent
functions sechjτ to zero generates the speed as in (84),
and the wave number

ω =
[
(n+ 1)

(
N∑
n=1

δlnAn

)
− ΓlA

2n+1
l

−(n+ 1)κ(αl − alκ)Al
]/

(n+ 1)(blκ− 1)Al, (104)
where for convenience we defined Γl = cl + κ(λl + ξl).
Next, the comparison of the two possible expressions of
the soliton speed ν, (8) and (84) yields

B =

√√√√√√ n2(blκ− 1)2ΓlA
2n+1
l

(n+ 1)

{
(al − blαl)Al + b2l

(
N∑

n=1
δlnAn

)}
− b2l ΓlA

2n+1
l

(105)

as long as the radicand stay positive. Therefore the
bright 1-soliton solution is given by

q(l)(x, t) = Alsech
1
n [B(x− νt)]e i (−κx+ωt+Θ)

where the association between the amplitudes and the
inverse width is depicted in (105), the soliton speed can
be consider either as (8) or (84), and the waves number
is defined in (104). The corresponding constraints have
to be satisfies in order for the soliton to propagate within
the system (101).

4.2.2. Dark solitons
In the case of dark soliton the starting hypothesis is as

in (70). Thus, the substitution of such hypothesis in (81)
prompt to{

[κ(αl + blω − alκ)− ω]− 2p2(al − blν)B2
}
Al tanhp τ

+p(p− 1)(al − blν)AlB
2 tanhp−2 τ

+p(p+ 1)(al − blν)AlB
2 tanhp+2 τ

+ [cl + κ(ξl + λl)]A
2n+1
l tanh(2n+1)p τ

−

(
N∑
n=1

δlnAn

)
tanhp τ = 0.

The existing balance between dispersion and nonlinearity
leads to the value of the parameter p = 1/n. However,
the standalone element tanhp−2 τ leads to p = 1, there-
fore n = 1 implying p = 1. As a direct consequence,
the system with power law nonlinearity (101) collapses
the system with Kerr law (89) when dealing with dark
solitons, whose results were discussed in (94)–(96).

4.2.3. Singular solitons (type-I)
Now we proceed to discuss the last singular soliton

type-I of this manuscript. To explore singular type-I soli-
ton propagation on the system (101), we evaluate the hy-
pothesis (75) within the real part equation (102), yielding{

[κ(αl + blω − alκ)− ω] + p2(al − blν)B2
}
Alcschpτ

+p(1 + p)(al − blν)AlB
2cschp+2τ

+ [cl + κ(ξl + λl)]A
2n+1
l csch(2n+1)pτ

−

(
N∑
n=1

δlnAn

)
cschpτ = 0.

Balancing principle leads the same value of p = 1/n.
From the linearly independent functions one can retrieve
the speed (87) while the wave numbers has the new form

ω =

(n+ 1)

(
N∑
n=1

δlnAn

)
+ ΓlA

2n+1
l − (n+ 1)κ(α− aκ)

(n+ 1)(blκ− 1)Al
,

where Γl = cl + κ(ξl + λl). Equating the soliton
speeds (8) with (87) leads to

B =

√√√√√√ n2(blκ− 1)2ΓlA
2n+1
l

(n+ 1)

[
(al − blαl)Al + b2l

(
N∑

n=1
δlnAn

)]
+ b2l ΓlA

2n+1
l
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subject to

ΓlA
2n+1
l

{
(n+ 1)

[
(al − blαl)Al + b2l

(
N∑
n=1

δlnAn

)]
+b2l ΓlA

2n+1
l

}
> 0.

Therefore the singular type-I soliton solution to (101) is

q(l)(x, t) = Alcsch
1
n [B(x− νt)]e i (−κx+ωt+Θ)

where the amplitude-inverse width relation, speed, and
wave number are presented above together with corre-
sponding solvability conditions.
4.2.4. Singular solitons (type-II)

The last type of soliton to be considered for power
law nonlinearity is the singular type-II soliton. In order
to study the dynamics of such soliton within the sys-
tem (101) we substitute a hypothesis of the form (78) in
the real part portion (102) to get{

[κ(αl + blω − alκ)− ω]− 2p2(al − blν)B2
}
Al cothp τ

+p(p− 1)(al − blν)AlB
2 cothp−2 τ

+p(p+ 1)(al − blν)AlB
2 cothp+2 τ

+ [cl + κ(ξl + λl)]A
2n+1
l coth(2n+1)p τ

−

(
N∑
n=1

δlnAn

)
cothp τ = 0.

Once again, the balance between dispersion and nonlin-
earity leads to p = 1/n. Moreover, the standalone el-
ement cothp−2 τ leads to p = 1. Thus, equating both
values of p makes n = 1. Therefore, for the type-II sin-
gular soliton solution, the system with power law nonlin-
earity (101) reduces to the system with Kerr nonlinear-
ity (89), whose results, as in the case of dark soliton, were
discussed above through (95)–(96) together with the cor-
responding constraints. Finally, the type-II singular soli-
ton solution for the nonlinear system (63) has the form

q(l)(x, t) = Al coth[B(x− νt)]e i (−κx+ωt+Θ)

where parameters along with corresponding constraints
are the same as for dark soliton in the case of multiple-
core couplers when coupling with the nearest neighbors
with Kerr law nonlinearity.

5. Conclusions

This paper obtained perturbed bright, dark and singu-
lar soliton solutions for optical couplers by the method of
undetermined coefficients. Two forms of nonlinearity are
studied in this paper and they are Kerr law and power
law. Both twin core as well as multiple core couplers are
addressed. The multiple core couplers are further classi-
fied. When the coupling is with immediate neighbors and
the second case is when coupling is with all neighbors. In
all of these three forms of couplers, it has been established
as usual that for power law nonlinearity, dark solitons
will exist provided its nonlinearity parameter condenses
to unity; in other words power law nonlinearity collapses

to Kerr law. In fact, this is also true for the second
form of singular optical solitons. These are phenomenal
observations that are made in fibers, couplers and other
optical devices. The paper will be extended further, later
on, with additional form of nonlinearities and these are
parabolic law, dual-power law, quadratic-cubic law, anti-
cubic law and others. The results will be soon reported.
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