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The numerical method of the effective refractive index of porous composite materials calculation was improved
by implementation of microlevel cellular structural models. The proposed solution gives the ability uniformly to
analyse complex structural inhomogeneities and to synthesize the corresponding index based on the simulation of
electrostatic field. The proposed realization is simpler and takes less computations capacities in comparison to
analogous simulation methods. The method was probed on the example of SiO2 nanoporous matrix with refractive
index n = 1.426 at λ = 2.71 µm wavelength. The results of simulation are in good agreement with other analytical
models from literature.

DOI: 10.12693/APhysPolA.133.164
PACS/topics: 02.70.Dh, 41.20.Cv, 78.20.Ci, 81.05.Rm

1. Introduction

Porous composite materials, such as anodic alumina
(Al2O3), silicon dioxide (SiO2), titanium dioxide (TiO2)
and others are commonly used for development of mi-
crosystems, environment sensors, filtering elements for
micro- and nanometric filtration and substances separa-
tion, matrices for nanoparticles synthesis, nanoelectronic
devices, etc. Such variety of applications is possible be-
cause of the available porous phase with self-organized,
usually hexagonal, pores placement [1–4].

The actual task of porous materials investigation is
in finding the effective physical characteristics of those
porous composites, in particular the effective refractive
index, which depends on structural parameters of the
composite. Previously we have developed setups for ex-
perimental testings of the crystalline materials in wide
frequency range [5–11]. However, with development of
new materials new methods for rapid composite materials
evaluation are crucial. Investigation of these new meth-
ods become even more necessary if pores of the composite
are filled with another crystalline material [12].

In addition to the experimental verification of the
results, the numerical simulation of the composites is
a powerful tool for receiving results on the investi-
gated structure. Furthermore, the numerical methods
and models that describe corresponding physical process
within composite structure are used to achieve results
with the maximal accuracy [13]. Typically, they are
based on the finite element method [14]. Thus, using
the combinations of different methods and approaches in
the present paper the numerical method for the effec-
tive refractive index calculation of the porous crystalline
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composites is adapted and improved. Due to the usage
of microlevel cell models, the proposed method gives the
ability to analyze the impact of material complex struc-
tural inhomogeneities

2. Calculation of the effective characteristics
of composite materials

Each composite has some specific set of characteris-
tics, which depend on the structural parameters. The
calculation of characteristics dependences can be done
by homogenization process. There are three main model
classes for this purpose [13–15]: (1) empirical model that
is based on the interpolation between natural experi-
ment results, (2) simple structural model that is based on
known analytical models of effective fields or on numeri-
cal averaging models that describe local interconnection
between composite matrix and one of its components,
(3) complex microlevel model that is based on numerical
methods and allow one to analyze composite components
inhomogeneities.

Analytical Drude model can be used for composites
with porous structure [2, 3, 16]. Out of the differential
equations of the Drude model one can get the following
equation:

n2eff = (1− P )n2m + Pn2p, (1)
where P is a porosity, nm is the characteristic of com-
posite matrix, np is the characteristic of porous phase.
Equation (1) is the particular case of the Bragg and Pi-
pard model [16] for the case of ideal cylindrical pores. It
can be used for calculation of all linear conductance char-
acteristics with different physical nature, but only when
physical flux is along the direction of the pores orienta-
tion. The Drude model describes the upper boundary for
refractive coefficient. The lower boundary describes the
known model of a parallel connection of conductivities,
from which the effective refractive index can be expressed
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neff = (1− P )nm + Pnp. (2)
The analysis and comparative characteristics of those and
set of other models are presented in different literature
references, in particular in [17].

As it is known, microlevel model of effective refractive
index calculation is the model that is based on trans-
verse electromagnetic waves propagation in composite
materials by finite element method of numerical simu-
lation [2, 3]. In this paper the model of electrostatic field
simulation is used for crystalline composites.

3. Generation of the structural model
of porous composite

Typically, the simulation of porous composite struc-
ture is related to pores formation process [1]. However,
it is a separate complex task and featured characteristics
of ending structure can be described by simpler methods,
such as simulation of cylindrical or fibrous inclusions.

The cellular models are used in this paper for gen-
eration of porous composites structural models [18, 19].
These models are used in the form of elementary volumes
of composite materials that contain big amount of regu-
lar voxel cells and simultaneously can be used as a finite
element discretization. Applying such formalization, the
structural model is described as a matrix of scalar in-
tensities in the range from 0 to 1. Sub-ranges of these
intensities determine the components of composite ma-
terials. The Bezier curves are used to generate random
fibrous inclusions that describe composite material pores.
The generation method is described in [4, 18]. Each pore
is placed in the basic coordinate of the elemental vol-
ume, which is a node of hexagonal tessellation. Applying
the cross sections of the intensities of elementary cells
at a certain level allows to define subranges and thus to
control the size of the pores. The usage of the Bezier
curves enables the pores to be modeled taking into ac-
count nanostructural heterogeneities observed in ordered
and disordered areas of real porous composites. More-
over, the further usage of the method of generating ran-
dom transition layers [20] makes it possible to investigate
structural heterogeneities of pore sides. The resulting
structural model can be directly used as finite-element
sampling by combining each of the eight adjacent cells
into a cube with its subsequent partition into six sim-
plexes.

4. Effective refraction index calculation

Let us consider dielectrics such as porous composites
that are used in optics. It can be assumed that there
are no magnetic field applied and the wavelength of elec-
tromagnetic field is constant (λ = const). In that case,
from the known system of the Maxwell equations one can
derive an elliptic equation for the potential of the elec-
trostatic field

ε∇2U = 0, (3)
where ε is a permittivity, U is a potential. Further, let
us consider a model of homogeneous elemental volume of
composite material in the form of a cube [14, 21], then

permittivity can be found as

ε =
d · ρ

Γρ(UΓρ − U∞)
, (4)

where Γρ is the surface area of the elemental volume Ω ,
and the flow density of the charge is given as ρ, and U∞
is a potential on the opposite side, d is a length of the
elemental volume. The boundary value problem can be
defined as:

ε∇2U(r) = 0, r ∈ Ω ,
∂U

∂n

∣∣∣∣
Γq

= ρ, n⊥Γρ, U |ΓU = U∞.

(5)
The solution to the (5) problem by finite element method
was proposed by authors in [14] for the case of station-
ary heat conduction and elasticity linear problems mod-
eling in terms of combined formalization of coupled ther-
moelectricity problems simulation in complex structured
composite materials.

The elements at boundaries can be considered as the
ends of separated conductors that are connected in par-
allel (in relation to the density of charge flux). Thus, in
the current paper, by applying the electrostatic analogy
method [14, 21], the discrete model, that is built on com-
posite material microlevel structural model discretization
by finite simplex elements, leads to equation [21] for ef-
fective permittivity calculation. As it is known, for di-
electrics n2 = ε, thus the effective refractive index of the
investigated composite material can be expressed as

n2eff = dρ
/∫∫

Γρ

(UΓρ − U∞)dΓρ =

dρ

Γρ

PΓρ∑
j=1

3(Γρ)j
/ 3∑
i=1

((Uρ)i,j − U∞) , (6)

where 3 is a number of surface finite element nodes,
(UΓρ)i,j is a potential at i-th node of j-th surface finite
element, PΓρ is a number of surface finite elements.

5. Results of simulation

The improved method was implemented by C++11
algorithmic language using OpenCL v.1.2 technology
(GPU Cedar, AMD Radeon HD 6300M Series) and Qt
SDK v.5.4.1. As the operating system Windows 7 Ulti-
mate x64 was used. The program was linked under x64 by
MinGW 4.9.2 compiler. Simulations were conducted on
a PC with average configuration. The results are shown
in Fig. 1 and Fig. 2.

As it can be seen from Fig. 2, at zero deviation, the
results are consistent with the Drude model within the
limits of the computational error, since the pores are de-
scribed by ideal cylindrical inclusions.

6. Conclusions

In this paper, the method of effective refractive in-
dex calculation of porous composite materials was im-
proved by using the microlevel cellular structural model,
the method of random fibrous inclusions generation using
the Bezier curves, the numerical finite element model of
electrostatic processes, and the method of electrostatic
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Fig. 1. The results of porous composite material struc-
ture modeling: elemental volume with 1283 cells in
equivalent to 84 nm3; matrix SiO2 with refractive index
n = 1.426 (at λ = 2.71 µm) [3]; phase of reinforcement
with refractive index n = 1 — porous cylindrical inclu-
sions that are approximated by first order Bezier curves
with interpore distance of 12 nm, maximum pore diam-
eter Dp = 15 nm; the change in porosity P occurred
due to the application of the section of cells intensities,
which is equivalent to changing the diameter of the pore
Dp: a) — P = 4.44%, Dp = 3 nm; b) — P = 20.85%,
Dp = 6 nm; c) — P = 46.83%, Dp = 9 nm; d) —
P = 82.37%, Dp = 12 nm.

Fig. 2. Calculated effective refractive index of porous
composite material with different deviations of the pores
from linear orientation — the pores are approximated by
5th order Bezier curves by 10 linear segments per curve
and each curve node is uniformly deviated from linear
direction in the range from 0 to 0.2 from the length of
the elemental volume.

analogies. The proposed method of effective refractive
index calculation of porous composite materials, in com-
parison to the analytical methods, allows consideration
of complex structural heterogeneities of the material, and
directly apply it as a regular discretization and thereby
reduce the number of necessary calculations. Therefore,
such approach of effective refraction index modeling of
the porous composite based on the results of numerical
simulation of the electrostatic field is simpler to imple-
ment and requires less computing powers in compare to
similar numerical methods. The method was tested and
proved its feasibility on the example of SiO2 nanoporous
matrix with refractive index n = 1.426 at λ = 2.71 µm
wavelength. The results of simulation are in good agree-
ment with other analytical models from literature.
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