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Finite Element Treatment of Vortex States in 3D Mesoscopic
Cylindrical Superconductors in a Tilted Magnetic Field
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The time-dependent Ginzburg–Landau equations have been solved numerically by a finite element analysis for

the mesoscopic superconducting samples with cylindrical shape in a uniform axial magnetic field. We obtain the
different vortex patterns as a function of the applied field perpendicular to its surface. We find that multi-vortex
states are ground state in three-dimensional mesoscopic cylinders. These results show that our approach is an
effective and useful to interpret experimental data on vortex states in the mesoscopic superconductors.
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1. Introduction

Modern lithography techniques enable one to create
mesoscopic superconducting structures of varied geome-
tries [1, 2]. Due to the interaction between vortices and
sample boundaries, vortex configurations strongly de-
pendent on the size and geometry of mesoscopic sam-
ples whose dimensions are of the order of the penetra-
tion depth λ or the coherence length ξ. For example,
strong confinement leads to the formation of the giant
vortex state [3–7] and multivortex state [8–14], which are
energetically less favorable in bulk type-II superconduc-
tors [15]. The vortex–antivortex states are easily stabi-
lized in an inhomogeneous magnetic field [16]. Recent
theoretical studies have shown that vortex–antivortex
states can also be stabilized in submicron superconduc-
tors even in a homogeneous magnetic field [17]. Vor-
tices show very rich static and dynamic behavior in the
presence of a weak link [9, 12, 18]. A weak link is com-
monly achieved by two superconducting layers separated
by a normal metallic layer, or a weak superconducting
region. Vortices in the weak link are found to be more
mobile than the ones located in the strong superconduct-
ing regions between the weak links leading to distinct
dissipation in the system. In experiment, the measured
superconducting phase boundary for the mesoscopic Al
square shows the direct experimental evidence for these
symmetry-induced vortex-antivortex pairs [19].

An experimental investigation was made of flux jumps
and irreversible magnetization of mesoscopic Al super-
conducting rings, which indicated that the change of vor-
ticity with magnetic field could be larger than unity [20].
A direct observation of vortex states in small supercon-
ducting disks for vorticity L = 0 to 40 was also re-
ported [21].
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In previous theoretical studies of vortex states, most of
them were performed using the Ginzburg–Landau (GL)
theory but in the two-dimensional limit. The numerical
investigations of the three-dimensional (3D) GL formal-
ism were also performed using a self-consistent approach
and the finite difference technique for solving two coupled
GL equations [3, 10, 11, 18]. Since recently, such super-
conducting samples (cylindrical wires and tubes) were
experimentally realized [22]. In this paper, we investi-
gate the 3D time-dependent Ginzburg–Landau (TDGL)
equations in the order parameter ψ of the Cooper-pair
condensate for fully 3D cylindrical samples in the basis
of finite-element method (FEM) [12, 23], which is proved
to be an effective method for the mesoscopic supercon-
ductors with a complex geometry [23].

The paper is organized as follows. In Sect. 2, we show
the derived TDGL equations and explain the numerical
method and procedure we use in the calculations. In
Sect. 3, we analyze the results obtained for the samples
with cylindrical symmetry. Our results are finally sum-
marized in Sect. 4.
2. Time-dependent Ginzburg–Landau model
We consider the mesoscopic superconducting hollow

cylinders with inner radius R i , outer radius Ro and the
height d. Figure 1 shows the schematic view of the
cylinder under an arbitrarily tilted field, where the ro-
tation angle θ is measured with respect to the major (z)
axis: H = H0 cos θ. The plane of rotation is referred
to as the y-z plane, and we introduce the rotation for
fields oriented parallel and perpendicular to the major
axis: H‖ ≡ H(θ = 00) and H⊥ ≡ H(θ = 90◦), re-
spectively. The GL theory describes the superconducting
state through a complex order parameter ψ for which |ψ|2
represents the density of the Cooper pairs. The order pa-
rameter and the local magnetic field can be determined
by their TDGL equations, which are expressed by(

∂

∂t
+ iΦ

)
ψ = (i∇+ A)2ψ + (1− |ψ|2)ψ, (1)

(152)

http://doi.org/10.12693/APhysPolA.133.152
mailto:plpeng@shiep.edu.cn


Finite Element Treatment of Vortex States. . . 153

σ

(
∂A

∂t
+∇Φ

)
= Js − κ2∇×∇×A, (2)

with boundary conditions
n · (− i∇−A)ψ|⊥,boundary = 0, (3)

where Φ is the electric potential, A is the vector poten-
tial, σ is the electric conductivity, n is the normal unit
vector on the surface. The density of the superconduct-
ing current Js is given by

Js =
i

2
(ψ∇ψ∗ − ψ∗∇ψ)− |ψ|2 A. (4)

We scale the length in units of ξ = ~/
√

2m |α0|, the
order parameter ψ in units of ψ0 =

√
−α0/β (with α0

and β being the GL coefficients [24]), the vector poten-
tial A in units of A0 =

√
2κHcξ, the time t in unit of

t0 = π~/8kBTc, and the local magnetic field B = ∇×A

in units of Hc2 =
√

2κHc, where Hc is the thermody-
namical critical field, and κ = λ/ξ is the GL parame-
ter. Notice that the TDGL equations are gauge invari-
ant under the transformations ψ′ = ψ e iχ, A′ = A+∇χ,
Φ′ = Φ−∂χ/∂t. Therefore, we choose the zero-scalar po-
tential gauge, that is, Φ = 0 at all times and positions.
The free energy of the superconducting state, measured
in F0 = H2

cV /8π units, is expressed as

F =
2

V

∫ [
− |ψ|2 + 1

2
|ψ|4 + |(− i∇−A)ψ|2

+κ2 (B −H)
2
]

dV. (5)

In principle, the TDGL equations can provide all tran-
sient states for a fixed external applied magnetic field. A
recent review [25] warns us of the fact that for gapped
superconductors TDGL is not strictly valid even above
Tc, while below Tc it becomes totally wrong; nevertheless
TDGL remains popular because of its simplicity and its
ability to reproduce observed phenomena. Kramer and
Watts-Tobin [26] generalized TDGL equation so that it
should be applicable to gapped superconductors as long
as there is local equilibrium, while still retaining some
of the simplifying features of the TDGL formalism. The
simulations of the vortex states are conducted in (i) field
sweep up: we started from the |ψ| = 1 and slowly in-
creased the magnetic field, after reaching the stationary
state, (ii) field sweep down: we started simulation with
|ψ| = 0 and H > Hc and decreased the field with small
steps. The dimensionless magnetization, which is a direct
measure of the expelled magnetic field from the sample, is
defined asM = (〈B〉 −H)/4π, where 〈B〉 is the magnetic
induction averaged over the mesoscopic superconducting
cylinder volume V , i.e., 〈B〉 = (1/V )

∫
B (r) dV . Our

simulations have been carried out by using σ = 1 and
κ = 10 for the system. The normalized time t/t0 = 0 to
t/t0 = 105 for the evolution of the dynamics.

3. Results and discussions

We first consider a mesoscopic superconducting cylin-
der of size R = 5ξ and d = 10ξ, as illustrated in Fig. 1.
Figure 2 shows absolute value of the order parameter and
corresponding isosurface plots of vortex tubes for three

selected vortex configurations at the field H/Hc2 = 0.4,
H/Hc2 = 0.5, and H/Hc2 = 0.6. The cylinder is in
an external uniform magnetic field H‖ (θ = 0◦). Three
selected vortex configurations display vorticity L =3, 4
and 5 vortex states, respectively. These three vortex con-
figurations illustrate general features of the vortex tubes
inside the cylinder. A vortex tube must reach the surface
perpendicularly in order to avoid a supercurrent compo-
nent pointing outwards the surface.

Fig. 1. Considered superconducting geometries: (a)
solid cylinders and (b) hollow cylinders. Inner radius
(if any) is denoted by R i and outer one by Ro.

Fig. 2. Absolute value of the order parameter in a 3D
mesoscopic superconducting cylinder with the radius
R = 5ξ and the height d = 10ξ at the field H/Hc2 = 0.4
(a), H/Hc2 = 0.5 (b), and H/Hc2 = 0.6 (c). The cylin-
der is in an external uniform magnetic field H‖ (θ = 0◦).
Parts (d)–(f) show the corresponding isosurface plots of
vortex tubes of (a)–(c). Blue to red means the absolute
value of the order parameter ranges from minimum to
maximum.
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Fig. 3. Free-energy curve [A], magnetization [B] and
selected 3D vortex states and corresponding phases [C]
in a 3D mesoscopic superconducting cylinder with the
radius R = 5ξ and the height d = 5ξ. The cylinder is in
an external uniform magnetic field H‖ (θ = 0◦). Blue
to red means order parameter range from minimum to
maximum, whereas for order parameter phase, it indi-
cates 0−2π.

Figure 3 shows the full free-energy spectrum, magneti-
zation and the corresponding vortex states as a function
of applied magnetic field for the cylinder of size R = 5ξ
and d = 5ξ. The cylinder is in an external uniform mag-
netic field H‖ (θ = 0◦). Figure 3a shows the free energy
as a function of H for the cylinder. The lowest energy
curve corresponds to the thermodynamic stable pattern,
the Meissner phase with no vortices, but only up to the
first penetration field Hp = 0.39Hc2. As the applied field
is further raised, three vortex tubes enter the sample.
Each jump in the magnetization curve corresponds to a
transition between different vortex states (Fig. 3b). We
find the multi-vortex states with vorticity L = 2, 3, 4,
5, 6, 7 and 8 for 0.39Hc2 < H < 0.95Hc2, and the gi-

Fig. 4. Vortex tubes in the 3D mesoscopic super-
conducting cylinder at the field H/Hc2 = 0.48 (a),
H/Hc2 = 0.56 (b), H/Hc2 = 0.72 (c), H/Hc2 = 0.76(d),
and H/Hc2 = 0.82 (e). The cylinder is in an exter-
nal uniform magnetic field H‖ (θ = 30◦). Parts (f)–(j)
show the corresponding isosurface plots of vortex tubes
of (a)–(e). Blue to red means order parameter range
from minimum to maximum.

ant vortex states [3, 25, 26] with vorticity L = 9−13 for
H > 0.95Hc2. It is clear that the L = 0, 2–13 state is a
ground state. To investigate the effects of the magnetic
field on the multi-vortex states, the selected vortex states
and corresponding phases are given in Fig. 3c. One can
see that the vortices enter into the cylinder with increas-
ing H value. When encircling a single vortex, the phase
of the order parameter changes with 2π. The strong con-
finement in the mesoscopic regime prevents the formation
of hexagonal structures and we usually obtain ring sym-
metric structures. With increasing magnetic field vortex
enters the sample in the form of tube which was believed
to be due to the presence of a surface barrier [29].
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Fig. 5. Free-energy curve (A), magnetization(B) and
selected 3D vortex states and corresponding phases (C)
in a 3D mesoscopic superconducting cylindrical shell
with the inner radius R i = ξ, outer radius Ro = 5ξ
and the height d = 5ξ. Parts (a)–(d) are the selected
3D vortex states for H/Hc2 = 0.60 (a), H/Hc2 = 0.70
(b), H/Hc2 = 0.86 (c) and H/Hc2 = 0.95 (d); parts (e)–
(h) are the corresponding 2D vortex states (in the (x, y)
plane (z = 2.5ξ)) as in (a)–(d); parts (i)–(l) are the cor-
responding phases of the order parameter as in (a)–(d).
Blue to red means order parameter range from mini-
mum to maximum, whereas for order parameter phase,
it indicates 0–2π.

Figure 4 shows vortex tubes in the 3D mesoscopic su-
perconducting cylinder at the tilted fields H/Hc2 = 0.48
(a), H/Hc2 = 0.56 (b), H/Hc2 = 0.72 (c), H/Hc2 = 0.76
(d), and H/Hc2 = 0.82 (e). The cylinder is in an external
uniform magnetic field H‖ (θ = 30◦). Parts (f)–(j) show
the corresponding isosurface plots of vortex tubes of (a)–
(e). Blue to red means order parameter range from mini-
mum to maximum. With a magnetic field not parallel to
the y or z axis, the vortices attempt to change their orien-

tation accordingly. In mesoscopic superconductors, the
screening effects of the Meissner currents that are gener-
ated to expel the magnetic field are always maximal in
the corners and vortices, as tubes of magnetic flux avoid
those regions. Therefore, the end of each vortex tube is
bent, and the vortex tube turns gradually to avoid the
corner of the sample. At the boundaries of the sample,
the supercurrent can only have the component parallel
to the surface. Therefore, the vortex endings must be
aligned perpendicular to the surface of the sample [30].

Next, we contrast the results of the cylinder to the case
of a mesoscopic hollow cylinder. Figure 5 shows the free
energy, magnetization and the absolute value of the order
parameter and corresponding phases for selected vortex
states for a hollow cylinder with the inner radius R i = ξ,
outer radius Ro = 5ξ and the height d = 5ξ. The cylin-
der is in an external uniform magnetic field H‖ (θ = 0◦).
The energy curve corresponds to the thermodynamic sta-
ble pattern, the Meissner phase with no vortices below
the first penetration field Hp = 0.5Hc2 (Fig. 5a). As
the applied field is further raised, the vortex tubes en-
ter the sample. Figure 4b shows the magnetization as a
function of applied magnetic field for the hollow cylinder.
We find the multi-vortex states with vorticity L = 2–10
for 0.50Hc2 < H < 1.35Hc2, and the giant vortex states
with 11 for H > 1.35Hc2. To investigate the effects of
the magnetic field on the multi-vortex states, the selected
vortex states and corresponding phases show the effects
of the magnetic field on the multi-vortex states (Fig. 5c).
One can see that the vortices enter into the cylinder with
increasing H value. Blue to red means order parame-
ter range from minimum to maximum, whereas for order
parameter phase, it indicates 0−2π. The effect of the
sample geometry leads to the following differences. First,
the Meissner effect becomes more pronounced leading to
a large first penetration field (Hp = 0.5Hc2). Second,
the jumps in the magnetization curve are much smaller,
leading to an almost continuous change in the number of
vortex. These results allow us to conclude that the sur-
face barrier for penetration of magnetic field in a hollow
cylinder is larger compared to the one in a solid cylinder.

4. Conclusions

In this paper we solved the time-dependent Ginzburg–
Landau equations for the three-dimensional mesoscopic
superconducting cylinders, and obtained numerical ex-
pression in terms of the finite-element method. The effect
of the sample geometry leads to the following differences.
First, the Meissner effect becomes more pronounced lead-
ing to a large first penetration field Hp. Second, the
jumps in the magnetization curve are much smaller, lead-
ing to an almost continuous change in the number of
vortex. These results allow us to conclude that the sur-
face barrier for penetration of magnetic field in a hollow
cylinder is larger compared to the one in a solid cylin-
der. the larger the inner radius of the superconducting
hollow cylinder , the larger the first penetration field Hp,
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i.e., the magnetic vortices penetrate hardly into the su-
perconductor and the system is hardly magnetized.
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