
Vol. 133 (2018) ACTA PHYSICA POLONICA A No. 1

Numerical Simulations of Shock Wave Propagating
by a Hybrid Approximation Based on High-Order

Finite Difference Schemes
A. Zeytinoglua, M. Sarib,∗ and B.P. Allahverdieva

aDepartment of Mathematics, Suleyman Demirel University, Isparta, Turkey
bDepartment of Mathematics, Yildiz Technical University, Istanbul, Turkey

(Received May 8, 2017; in final form October 19, 2017)
In this paper, we attempt to display effective numerical simulations of shock wave propagating represented

by the Burgers equations known as a significant mathematical model for turbulence. A high order hybrid approx-
imation based on seventh order weighted essentially non-oscillatory finite difference together with the sixth order
finite difference scheme implemented for spatial discretization is presented and applied without any transformation
or linearization to the Burgers equation and its modified form. Then, the produced system of first order ordinary
differential equations is solved by the MacCormack method. The efficiency, accuracy and applicability of the pro-
posed technique are analyzed by considering three test problems for several values of viscosity that can be caused
by the steep shock behavior. The performance of the method is measured by some error norms. The results are in
good agreement with the results reported previously, and moreover, the suggested approximation relatively comes
to the forefront in terms of its low cost and easy implementation.
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1. Introduction

The real world problems in many scientific areas such
as plasma physics, acoustics, fluid mechanics, electricity,
hydraulics, elasticity, structural analysis, magnetism, op-
tics etc. are represented by partial differential equations
or systems, generally, in nonlinear form. One of the sig-
nificant model equations is viscous Burgers equation in-
troduced first by Bateman [1] and then treated as a math-
ematical model for turbulence by Burgers [2, 3]. Since it
includes three important features of the Navier–Stokes
equations: diffusion, nonlinear convection and unsteadi-
ness, it is known as a simple nonlinear PDE comprising
diffusion and convection in fluid mechanics. This equa-
tion is introduced to describe the shock wave behaviors,
characteristics of turbulent flow caused by the interaction
of the opposite effects of diffusion and convection, mass
transport, continuous stochastic processes, gas dynam-
ics, longitudinal elastic waves in an isotropic solid, sound
waves in a viscous medium, wave processes in thermoe-
lastic media, transport and dispersion of pollutants in
rivers, traffic flow, etc. The equation is given in general
form by

ut + uµux − υuxx = 0, x ∈ R, t > 0 (1)
where υ is kinematic viscosity checking the balance be-
tween diffusion and convection, and µ is a positive con-
stant. The above equation is called as the Burgers equa-
tion with µ = 1, while it is known as the modified Burg-
ers equation that has the strong nonlinearity for µ ≥ 2.
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In both case, shock behavior occurs when the value of
viscosity υ is taken smaller. These equations have some
analytical solutions involving infinite series, but they are
not practical enough due to the slow convergence of them
for small viscosity values. Hence, the derivation of re-
liable, accurate, applicable, and efficient methods for
simulation of these problems is both necessary and im-
portant for technological and scientific developments in
many disciplines. In order to help engineers and physi-
cists for the above equation and their applications, a
lot of numerical methods have been derived and devel-
oped to understand correctly the process of the physical
model for many years. Especially, researchers have given
their attention for solving the Burgers or modified Burg-
ers equations with small viscosity parameters. Various
numerical studies including such as the Galerkin finite
element method [4], least-squares quadratic B-splines fi-
nite element method [5], cubic [6] and quartic [7] B-spline
collocation method, modified cubic B-splines collocation
method [8], a reproducing kernel function technique [9],
Sinc differential quadrature method [10], fourth order fi-
nite difference method [11], implicit fourth order compact
finite difference scheme [12], a sixth order compact finite
difference method [13] etc. have been presented for nu-
merical solutions of the Burgers equation. On the other
hand, several numerical techniques suggested for solving
the modified Burgers equation can be summarized as fol-
lows.

Septic B-splines collocation method is presented by
Ramadan et al. [14]. A collocation method based on
quantic splines is used by Ramadan and El-Danaf [15].
Saka and Dag [16] apply time and space splitting tech-
nique and then employ quintic B-spline collocation proce-
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dure. Duan et al. [17] develop a special lattice Boltzmann
method. A Chebyshev spectral collocation method,
known as El-Gendi method, is elaborated by Temsah [18].
Irk [19] proposes a collocation method based on sextic
B-spline. An implicit finite difference scheme based on
fourth order rational approximations and an explicit fi-
nite difference scheme based on second order rational
approximations to the matrix-exponential term are pro-
posed by Bratsos [20, 21], Bratsos and Petrakis [22], re-
spectively. Gupta and Kadalbajoo [23] construct a nu-
merical scheme that comprises of implicit Euler method
for time discretization and a monotone hybrid finite
difference operator for spatial discretization, and use
the quasi-linearization process to tackle the nonlinear-
ity. A Petrov–Galerkin method is applied by Roshan
and Bhamra [24]. Also, Kutluay et al. [25] prefer to lin-
earize the nonlinear term and implement a cubic B-spline
collocation method.

The effort of finding a more accurate numerical ap-
proach is still in progress. Investigating an effective and
accurate numerical method encourages us to produce a
new hybrid approach based on some high order finite
difference (FD) schemes for analyzing the shock wave
propagating. One of these FD schemes is a seventh-
order weighted essentially non-oscillatory (WENO7) [26–
28] method. It is well-known that the WENO method is
based on ENO schemes and these are very good alter-
natives for numerical solutions of PDEs in conservative
form. High order accuracy can be achieved in the smooth
regions and discontinuities can be computed without spu-
rious oscillations [29]. Some studies in recent years have
introduced various versions of the WENO scheme de-
rived for improving ENO properties [26–32], while the
WENO schemes have been combined with a high order
method to overcome some drawbacks [33–35]. Inspired
by these drawbacks in the corresponding studies, we pre-
fer to combine the WENO7 scheme with the sixth-order
finite difference (FD6) scheme [36, 37] because the FD6
gives convergence approximations as well as being effec-
tive, reliable, and easy to implement. Because of calcu-
lating an original nonlinear equation without any trans-
formation or linearization provides preserving the actual
physical properties of solutions, we directly implement
the constructed scheme to the relevant terms in the equa-
tions. Some error norms are presented to demonstrate
the applicability, validity, efficiency, and accuracy of the
proposed method.

The organization of this paper is summarized as fol-
lows. In Sect. 2, the constructed hybrid scheme is in-
troduced in both space and time. In Sect. 3, three test
problems that the first one is an example for the Burg-
ers equation with µ = 1 and the others are examples for
modified Burgers equation with µ = 2 and µ = 3, respec-
tively, are solved. The results are presented by way of
figures and tables compared with some previous studies
in literature. In the last section, the findings in the paper
are summarized.

2. Construction of the hybrid scheme

One can rewrite Eq. (1) with the following form:

ut = −f(u)x + υuxx, f(u)x = (
uµ+1

µ+ 1
)x. (2)

The strength of nonlinearity of the equation changes for
the different values of parameter µ. The proposed ap-
proach is involved the FD6 and WENO7 finite difference
formulations to the spatial derivatives, and the MacCor-
mack discretization is taken into account for the time
derivative. Details of the implementation of the present
method are introduced as follows.

First of all, we divide the domain of problem [a, b] into
N subintervals such as a = x1 < x2 < . . . < xn <
xN+1 = b with the spatial step size h = ∆x = xi+1 − xi
for i = 1, 2 . . . , N . Also, (n + 1)-th time level is defined
by tn+1 = tn + ∆t where tn is the initial time for n = 0.
Thus, the numerical solution of u is represented by uni
at grid point (xi, t

n). To discretize the diffusion term
uxx in Eq. (2), we use the FD6 scheme derived for the
second order derivatives. The FD6 scheme can briefly be
introduced as follows.
u′ and u′′ in space, can be approximated by the fol-

lowing FD6 formulae using 7-point stencil

u′i =
1

h

R∑
j=−L

aj+Lui+j , u
′′
i =

1

h2

R∑
j=−L

ãj+Lui+j ,

1 ≤ i ≤ N + 1.

In the above equations, (N + 1) denotes the number of
grid points, ak and ãk(k = 0, . . . , R + L) are unknown
constants, R and L denote the number of grid points in
the right and left hand side for the taken stencil, respec-
tively. At internal points, R and L is equal while they
are different for the boundary nodes.

Fig. 1. Stencils for FD6 schemes.
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After implementing some algebraic operations to Eq. (3),
the expression of each function belonging to internal
nodes is found as

u′i =
−ui−3+9ui−2−45ui−1+45ui+1−9ui+2+ui+3

60h

−0.007142857h6u
(7)
i ,

where the term 0.007142857h6u
(7)
i defines the truncation

error. In a similar way, the coefficients ak and ãk for all
nodes can be determined with the Taylor series expan-
sions and found as seen in Table I.

For the term f (u)x in Eq. (2), the WENO7 scheme is
implemented together with the FD6 scheme. The WENO
schemes are based on ENO schemes and it was first sug-
gested by Liu et al. [38]. They use a convex combina-
tion of all candidate stencils against the ENO schemes.
Hence, high order accurate solutions in smooth regions
and a good convergence are provided. In the literature,
many researchers have focused on the WENO schemes
in order to improve them. Taking inspiration from those
studies, the present work discusses a combination of the
WENO7 finite difference scheme with the FD6 scheme
in computing highly accurate results. The mentioned
WENO scheme is applied to internal nodes and the FD6
formulae given in above are implemented for near the
boundaries. We can then introduce the WENO7 proce-
dure with its main points herein below [26–28].

The WENO schemes are successful in terms of the nu-
merical approximation for discretization of the spatial
derivatives in the following hyperbolic conservation law

ut + f (u)x = 0. (4)
To obtain high-order accurate solutions, a reconstruction
procedure based on the local smoothness of numerical
solution is used as the main point of the WENO finite
difference scheme. The term f(u)x called the numerical
flux is approximated by

f(u)x|x=xj ≈
1

∆x
(f̂j+ 1

2
− f̂j− 1

2
). (5)

The WENO7 scheme uses 7 candidate stencils written as
a set S = {xj−3, . . . , xj+3} for these numerical fluxes. It
is divided into four subset as Sm = {xj−3+m, . . . , xj+m},
m = 0, 1, 2, 3 as seen in Fig. 2.

Fig. 2. Candidate stencils for the WENO7 scheme.

TABLE IThe coefficients ak and ãk.

i k

0 1 2 3 4 5 6

1
ak –147 360 –450 400 –225 72 –10
ãk 812 –3132 5265 –5080 2970 –972 137

2
ak –10 –77 150 –100 50 –15 2
ãk 137 –147 –255 470 –285 93 –13

3
ak 2 –24 –35 80 –30 8 –1
ãk –13 228 –420 200 15 –12 2

internal
nodes

ak –1 9 –45 0 45 –9 1
ãk 2 –27 270 –490 270 –27 2

N − 1
ak 1 –8 30 –80 35 24 –2
ãk 2 –12 15 200 –420 228 –13

N
ak –2 15 –50 100 –150 77 10
ãk –13 93 –285 470 –255 –147 137

N + 1
ak 10 –72 225 –400 450 –360 147
ãk 137 –972 2970 –5080 5265 –3132 812

∗Each given value of ak and ãk in the table must be
divided by 60 and 180, respectively

Using these stencil sets Sm, the numerical flux f̂j+ 1
2
is

written as

f̂j+ 1
2

=

3∑
m=0

ωmf̂
(m)

j+1
2

, (6)

where

f̂ (m)

j+1
2

=

3∑
i=0

bmifj+m−i, ωm =
αm∑3
k=0 αk

,

αm = dm(1 + (
τ7

(ε+ βm)
)q). (7)

In Eq. (7), τ7 = |β0 − β3|, the linear weights are d0 =
1/35, d1 = 12/35, d2 = 18/35, d3 = 4/35, and ωm are
called non-linear weights. The coefficients bmi can be
calculated with the approach inspired by Xie [39] using
a fourth order polynomial

h(x) = A+B(x− xj+1/2) + C(x− xj+1/2)2

+D(x− xj+1/2)3 + E(x− xj+1/2)4,

with the four candidate stencils in Fig. 2 and are listed in
Table II. The coefficients required for f̂j− 1

2
can be found

using the same stencils in a similar way. In calculations,
ε is used to avoid the division by zero and it is selected
to be quite small, ε = 10−10 and q = 2.
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TABLE II
The coefficients bmi for the WENO7 scheme.

bmi i = 0 i = 1 i = 2 i = 3

m = 0 25/12 −23/12 13/12 −1/4

m = 1 1/4 13/12 −5/12 1/12

m = 2 −1/12 7/12 7/12 −1/12

m = 3 1/12 −5/12 13/12 1/4

The smoothness indicators, βm, are given by [28]:
β0 = f(uj−3)

× [547f(uj−3)−3882f(uj−2)+4642f(uj−1)−1854f(uj)]

+f(uj−2) [7043f(uj−2)−17246f(uj−1)+7042f(uj)]

+f(uj−1) [11003f(uj−1)−9402f(uj)] +f(uj) [2107f(uj)] ,

β1 = f(uj−2)

× [267f(uj−2)−1642f(uj−1)+1602f(uj)−494f(uj+1)]

+f(uj−1) [2843f(uj−1)−5966f(uj)+1922f(uj+1)]

+f(uj) [3443f(uj)−2522f(uj+1)] +f(uj+1) [547f(uj+1)] ,

β2 = f(uj−1)

× [547f(uj−1)−2522f(uj)+1922f(uj+1)−494f(uj+2)]

+f(uj) [3443f(uj)−5966f(uj+1)+1602f(uj+2)]

+f(uj+1) [2843f(uj+1)−1642f(uj+2)] +f(uj+2) [267f(uj+2)] ,

β3 = f(uj)

× [2107f(uj)−9402f(uj+1)+7042f(uj+2)−1854f(uj+3)]

+f(uj+1) [11003f(uj+1)−17246f(uj+2)+4642f(uj+3)]

+f(uj+2) [7043f(uj+2)−3882f(uj+3)] +f(uj+3) [547f(uj+3)] .

For more details of the WENO finite difference
scheme, interested readers are referred to literature such
as [26, 28, 30].

After the implementation of the aforementioned
schemes to Eq. (2), the MacCormack method is applied
to calculate new values of u at the next time level. This
method is widely used for solving nonlinear PDEs rep-
resenting fluid flows and provides accurate results [40].
Let us consider the following general form of governing
equation:

dui
dt

= Pui.

In this form, P represents a spatial differential operator,
and each value on the right hand side of the above equa-
tion are already known through the method described in
above. The MacCormack approach is then implemented
to solve this semi-discrete equation via the following pro-
cess:

pre. step:

un+1
i = uni + ∆tPuni ,

cor. step:

un+1
i = u

n+1/2
i +

∆t

2
Pun+1

i ,

u
n+1/2
i =

uni + un+1
i

2
.

3. Numerical treatments

In this section, the behaviors of abovementioned mod-
els for different values of viscosity are investigated and
the performance of the suggested method is presented in
terms of the accuracy. There are three test problems in-
cluding one Burgers equation with µ = 1 and two mod-
ified Burgers equation with µ = 2 and µ = 3. Some
figures are drawn to reveal the behaviors of per models
with some values of υ.

To demonstrate the accuracy and validity of the
method, L2 and L∞ error norms, defined as

L2 =

√√√√h

N∑
j=1

∣∣∣uanalyticalj − unumerical
j

∣∣∣2,
L∞ = max

∣∣∣uanalyticalj − unumerical
j

∣∣∣ ,
are computed for various values of viscosity υ at differ-
ent times t for chosen convenient space and time steps.
The obtained results are summarized in tables with some
known results in the literature. Also, the changes of ab-
solute errors in the relevant domains, and the changes of
L2 and L∞ errors in time are plotted.

Example 1. Firstly, we solve the Burgers equation
which is of the form with µ = 1:

ut + uux − υuxx = 0,

which has the following analytical solution representing
shock-like solutions of the above equation

u(x, t) =
x

t

t

1 +
√

t
t0

exp( x
2

4υt )
, 0 ≤ x ≤ 1, t ≥ 1,

where t0 = exp(1/8υ). The initial condition is written
from the exact solution as follows:

u(x, 1) = x
1

1 +
√

1
t0

exp(x
2

4υ )
,

and the boundary conditions are taken as u(0, t) =
0, u(1, t) = 0. This solution represents the propagation
of the shock [41]. Numerical results of this problem are
obtained by taking the viscosity υ as 0.01, 0.005, 0.0015
and 0.0005 for various values of space and time steps. L2

and L∞ error norms are documented in Tables III–VI.
The obtained results can be compared with some previ-
ous works given in the same tables.

We have seen from the corresponding tables that the
error norms of the proposed algorithm for all values of
viscosity υ used here are quite small, and furthermore,
better than most of the compared results. The compared
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TABLE IIIComparison of the error norms at various
times for υ = 0.0005 for example 1.

t

Present method
(h = 0.001, ∆t = 10−5)

[10]
(h = 0.005, ∆t = 0.001)

L2 × 104 L∞ × 103 L2 × 104 L∞ × 103

1.1 0.034057 0.048405 – –
1.7 0.113256 0.136531 2.01 2.374
2.4 0.117941 0.129910 0.87 0.662
3.1 0.112151 0.115540 0.52 0.377

TABLE IVComparison of the error norms at various
times for υ = 0.0015 for example 1.

t

Present method
(h = 0.005, ∆t = 0.001)

[14]
(h = 0.005, ∆t = 0.01)

L2 × 104 L∞ × 103 L2 × 104 L∞ × 103

1.2 0.35996 0.24217 3.85388 3.23685
1.4 0.36445 0.27047 4.64435 3.34889
1.6 0.39823 0.29614 4.96475 3.19232
1.8 0.42992 0.29917 5.09279 2.98679
2 0.45435 0.30556 5.12515 2.78315
2.2 0.47144 0.30725 5.10596 2.59512
2.4 0.48316 0.31193 5.05801 2.42555
2.8 0.49596 0.30442 4.92110 2.13805
3 0.49886 0.30092 4.84391 2.01647
3.4 0.50396 0.29144 4.68731 1.80869
3.7 2.91257 3.04635 6.44632 4.70819

results have generally been calculated by using some fi-
nite element based methods known as one of the strong
alternative approaches to produce accurate numerical so-
lutions. It is worthy note that the produced results here
have relatively higher accuracy than the literature results
computed by some of these powerful alternatives. In ad-
dition to its efficiency, the proposed hybrid scheme rela-
tively comes to the forefront in terms of its low cost and
easy implementation to the problems. It is also noted
from the tables that the errors have tendency to fluc-
tuating decrease as υ is decreased. The propagation of
wave at various times for corresponding viscosity values
are visualized in Fig. 3.

Fig. 3. The numerical solutions of example 1 at various
times using several υ parameters: (a) υ = 0.01, (b)
υ = 0.005, (c) υ = 0.0015, (d) υ = 0.0005.

TABLE VComparison of the error norms at var-
ious times using υ = 0.01, ∆t = 0.01
and h = 0.02 for example 1.

t
Present method [14]

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.1 0.00705 0.0260 0.4665 2.8683
1.3 0.00784 0.0245 0.6175 3.4716
1.5 0.00698 0.0190 0.6775 3.3548
1.7 0.01103 0.0543 0.6991 3.1348
1.9 0.04064 0.2292 0.7061 2.8880
2.1 0.13089 0.7245 0.7298 2.6699
2.3 0.34307 1.8493 0.8731 2.8077
2.6 1.0818 5.6084 1.7457 8.0680

[7] [18]
1.1 – – – –
1.3 – – – –
1.5 – – – 1.41
1.7 0.1701 0.4043 – 1.01
1.9 – – – 0.930
2.1 0.2048 0.8636 – 0.834
2.3 – – – 0.717
2.6 1.2995 6.6943 – 0.576

[16] [19]
1.1 – – – –
1.3 – – – –
1.5 – – – –
1.7 0.0175 0.0959 0.2083 0.4524
1.9 – – – –
2.1 0.2117 1.1476 – –
2.3 – – – –
2.6 1.5924 8.0680 1.5776 8.0680

It is well-known that the wave will be broken at time
tb = −1

minx u′
0(x)

and discontinuous solutions will occur if
the Burgers equation, in the case of υ = 0, is solved
with the smooth initial condition u0(x) for which u′0(x) is
somewhere negative [42]. Adding the viscosity-dispersion
term υuxx with υ 6= 0 viscosity values to the inviscid
form, as given in Eq. (1), provides to suppress the wave-
breaking and, therefore, prevent to occur discontinuous
solutions. This is reasonable because of that the disper-
sion gives rise to the wave to spread and this behaves
against the steep gradient of the nonlinear term. There-
fore, the smooth solutions of viscous Burgers equation
approaches a shock wave as υ → 0 [43]. It can be said
that the wave behaviors shown in Fig. 3 are in accord
with this physical interpretation. It is seen from the fig-
ure that the wave at initial time for υ = 0.01 is smooth
and the steep behavior decreases with the effect of dis-
persion as the time goes on. For smaller viscosity value,
υ = 0.0005, it develops into a sharp shock and this sharp-
ness continues as time progresses. It can also be observed
from Fig. 3 that the shock wave propagates faster when
viscosity υ is taken to be smaller.

Absolute errors are plotted in Fig. 4 for all viscosity
used here at different times t. It is clear for all υ values
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that absolute errors reach their maximum values at the
midpoints of the problem domain near the initial time
t = 1 while they become maximum near the right hand
boundary at corresponding latest times t since the right

end of the shock crashes the right hand boundary. We
also show the variations of L2, L∞ error norms with re-
spect to time for all values of viscosity in Fig. 5.

TABLE VIComparisons of the error norms at various times for υ = 0.005 for example 1.

Present method ∆t = 0.001, h = 0.005 [14] ∆t = 0.01, h = 0.02 [16] ∆t = 0.01, h = 0.005 [19] ∆t = 0.01, h = 0.005

t L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.2 0.00030 0.0014 0.58143 3.1354 – – – –
1.4 0.00028 0.0012 0.64676 2.9314 – – – –
1.5 0.00026 0.0010 – – – – – –
1.6 0.00023 0.0009 0.67610 2.6923 – – – –
1.7 0.00021 0.0008 – – 0.01053 0.03771 0.02210 0.07702
1.8 0.00019 0.0007 0.68762 2.4719 – – – –
2.0 0.00019 0.0010 0.68954 2.3767 – – – –
2.2 0.00105 0.0089 0.68602 2.2733 – – – –
2.4 0.00641 0.0527 0.67943 2.1676 0.00952 0.06464 – –
2.5 0.01421 0.1150 – – – – – –
2.8 0.10925 0.8435 0.68307 1.9690 – – – –
3 0.33600 2.5178 0.82951 2.9573 – – – –
3.1 0.55560 4.1038 – – 0.65307 4.7906 0.6312 4.7906
3.2 0.88640 6.4567 1.4856 7.4915 – – – –

[4] [7] ∆t = 0.01, h = 0.005 [9] ∆t = 0.01, h = 0.005 [10] ∆t = 0.001, h = 0.05

1.7 2.107 8.099 0.01705 0.0619 0.02681 0.09174 0.007 0.034
2.4 3.345 11.641 0.01252 0.0588 – – 0.007 0.025
2.5 – – – – 0.03135 0.11515 – –
3.1 4.820 15.867 0.60199 4.4347 – – 0.009 0.077

Fig. 4. Absolute errors for example 1 for various υ parameters.
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Fig. 5. (a) L2 and (b) L∞ errors for example 1 using various υ parameters.

Example 2. We consider the modified Burgers equa-
tion which is of the form with µ = 2:

ut + u2ux − υuxx = 0.

The initial and boundary conditions are taken as

u(x, 1) = x
1

1 + 1
t0

exp(x
2

4υ )
, u(0, t) = 0,

and
u(1, t) = 0,

written from the following analytical solution [44]:

u(x, t) =
x

t

1

1 +
√
t
t0

exp( x
2

4υt )
,

for 0 ≤ x ≤ 1, t ≥ 1, t0 ∈ (0, 1).

The case with t0 = 0.5 is considered in the numeri-
cal treatments. During the calculation process, we take
various values of viscosity υ from 0.01 to 0.0001 in or-
der to compare the obtained results with the literature.
The accuracy of the suggested scheme is examined by
computing L2 and L∞ error norms, and the obtained
results up to time t = 12 are presented in Table VII.
It can be seen from the table that the errors are small
enough and acceptable for all values of viscosity used. It
is also noted that the accuracy depends on the value of
viscosity, and we get better accuracy when the viscosity
takes smaller as is seen from Table VII. The obtained L2

and L∞ errors are compared with some relevant works
in the literature for various values of viscosity υ at times
t = 2, 4, 6, 8, 10 in Tables VIII and IX. It is deduced from
the comparisons of the results listed in these tables that
the proposed scheme produces the equivalent accuracies
to the literature results for all time levels. The suggested

TABLE VII

Some error norms at different times using
h = 0.0125, ∆t = 0.001 and various υ pa-
rameters for example 2

t L2 × 104 L∞ × 103 L2 × 104 L∞ × 103

υ = 0.01 υ = 0.001

2 3.79363 0.81575 0.681639 0.258274
3 3.44789 0.70956 0.617946 0.226454
4 3.17070 0.60496 0.564976 0.192488
5 3.06678 0.52647 0.525541 0.167045
6 3.22355 0.49063 0.493984 0.147930
7 3.63238 0.71291 0.467485 0.132945
8 4.18502 0.91727 0.444596 0.120741
9 4.77503 1.09189 0.424471 0.110673
10 5.33834 1.23368 0.406555 0.102599
11 5.84513 1.34419 0.390459 0.095445
12 6.28531 1.42703 0.375888 0.089435

υ = 0.005 υ = 0.0001

2 2.26539 0.579128 0.111533 0.0772467
3 2.05702 0.503712 0.116994 0.0755334
4 1.88170 0.429411 0.116509 0.0640031
5 1.75080 0.372495 0.111137 0.0580037
6 1.64604 0.329594 0.104917 0.0532005
7 1.55893 0.296190 0.099020 0.0479225
8 1.48704 0.269349 0.093711 0.0429854
9 1.43197 0.247128 0.088995 0.0396847
10 1.39755 0.228859 0.084805 0.0371205
11 1.38760 0.213391 0.081069 0.0346197
12 1.40390 0.200569 0.077717 0.0322778

approximation is relatively more advantageous than the
others because of producing the equivalent accurate re-
sults by using fewer grids. The behavior of the wave
throughout the given domain is depicted in Fig. 6 for
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some values of viscosity υ = 0.01, 0.005, 0.001 and 0.0001
from initial time t = 1 to t = 10. We can say from the
figure that the curve of initial wave decays as the time
progresses, and the decay gets fast as the viscosity υ de-
creases. Also note that amplitude of the wave decreases
as the viscosity υ gets smaller. For above viscosity val-
ues, the absolute errors throughout the domain at t = 2
and t = 10, and L2, L∞ errors versus the time are drawn
in Figs. 7 and 8, respectively.

It is observed from Fig. 7 that the absolute error for
υ = 0.01 reaches its maximum value on the first half

of the domain at time t = 2 and close by the right hand
boundary at time t = 10. The propagation of the wave to
the rightward, as the time progresses, confirms that the
absolute error increases towards the right hand boundary
of the domain. For the smaller viscosity value, such as
υ = 0.0001, the maximum error occurs near the left hand
boundary where the corresponding wave arises at both
t = 2 and t = 10. Furthermore, it is seen in Fig. 8 that
as the time advances, L2 and L∞ errors for υ = 0.01
increase while they decrease for the smaller υ values.

Fig. 6. The numerical solutions of example 2 at various times using the parameters h = 0.0125 and ∆t = 0.001.

Fig. 7. Absolute errors for example 2 using h = 0.0125 and ∆t = 0.001.
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Fig. 8. (a) L2 and (b) L∞ errors for example 2 using h = 0.0125 and ∆t = 0.001.

TABLE VIIIComparisons of the error norms at different times for various values of υ for example 2.

t Method
υ = 0.01 υ = 0.005 υ = 0.001

L2 × 104 L∞ × 103 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

2

present (∆t = 0.001, h = 0.0125) 3.794 0.8158 2.265 5.791 0.6816 2.583
[14]∗ (∆t = 0.01, h = 0.02) 7.904 1.703 – – 1.836 8.185
[15]∗∗ (∆t = 0.01, h = 0.005) 5.231 1.217 2.579 7.227 0.6704 2.797
[16] (∆t = 0.01, h = 0.005) 3.793 0.8168 2.265 5.800 0.6811 2.609
[18] (∆t = 0.01) – 0.758 – – – 2.73
[19]∗∗ (∆t = 10−5, h = 0.005) 3.849 0.8293 2.289 5.862 0.6843 2.623
[20] (∆t = 10−5, h = 0.005) – – 2.271 5.809 – –
[21] (∆t = 10−5, h = 0.001) 3.792 0.8167 2.265 5.803 0.6817 2.611
[22] (∆t = 0.0001, h = 0.005) 3.832 0.8164 2.285 5.804 0.6184 2.628
[24] (∆t = 0.01, h = 0.005) 3.755 0.8177 2.233 5.808 0.6607 2.619
[25] (∆t = 0.01, h = 0.005) 3.789 0.8163 2.260 5.792 0.6729 2.591

4

present (∆t = 0.001, h = 0.0125) 3.171 0.6050 1.882 4.294 0.5650 1.925
[14] (∆t = 0.01, h = 0.02) 5.577 0.9965 – – 1.144 3.564
[15] (∆t = 0.01, h = 0.005) 5.163 0.9314 2.528 5.545 0.6670 2.186
[16] (∆t = 0.01, h = 0.005) 3.172 0.6054 1.882 4.294 0.5652 1.929
[18] (∆t = 0.01) – 0.564 – – – 1.57
[20] (∆t = 10−5, h = 0.005) – – 1.883 4.297 – –
[21] (∆t = 10−5, h = 0.001) 3.155 0.6056 1.882 4.295 0.5652 1.929
[22] (∆t = 0.0001, h = 0.005) 3.144 0.6030 1.878 4.285 0.5662 1.933
[24] (∆t = 0.01, h = 0.005) 3.168 0.6081 1.893 4.321 0.5740 1.958
[25] (∆t = 0.01, h = 0.005) 3.172 0.6052 1.881 4.291 0.5635 1.922
present (∆t = 0.001, h = 0.0125) 3.224 0.4906 1.646 3.296 0.4940 1.479
[14] (∆t = 0.01, h = 0.02) 5.167 0.7611 – – 0.8142 2.135
[15] (∆t = 0.01, h = 0.005) 4.902 0.7225 2.257 4.308 0.6046 1.718
[16] (∆t = 0.01, h = 0.005) 3.260 0.5258 1.646 3.299 0.4942 1.481

6 [18] (∆t = 0.01) – 0.459 – – – 1.39
[20] (∆t = 10−5, h = 0.005) – – 1.646 3.300 – –
[21] (∆t = 10−5, h = 0.001) 2.731 0.4650 1.646 3.299 0.4942 1.481
[22] (∆t = 0.0001, h = 0.005) 2.710 0.4622 1.638 3.287 0.4932 1.481
[24] (∆t = 0.01, h = 0.005) 2.749 0.4675 1.664 3.326 0.5063 1.509
[25] (∆t = 0.01, h = 0.005) 3.260 0.5258 1.646 3.298 0.4939 1.478

Authors used: ∗h = 0.005 for υ = 0.001; ∗∗∆t = 0.001 for υ = 0.005.
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TABLE VIII (Cont.)

t Method
υ = 0.01 υ = 0.005 υ = 0.001

L2 × 104 L∞ × 103 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

8

present (∆t = 0.001, h = 0.0125) 4.185 0.9173 1.487 2.694 0.4446 1.207
[14] (∆t = 0.01, h = 0.02) 6.428 1.358 – – 0.6484 1.683
[15] (∆t = 0.01, h = 0.005) 5.478 0.9634 2.030 3.530 0.5480 1.419
[18] (∆t = 0.01) – 0.366 – – – 1.10
[24] (∆t = 0.01, h = 0.005) 2.347 0.3762 1.498 2.717 0.4557 1.233
[25] (∆t = 0.01, h = 0.005) 4.280 0.9634 1.487 2.693 0.4449 1.208

10

present (∆t = 0.001, h = 0.0125) 5.338 1.234 1.398 2.289 0.4066 1.026
[14] (∆t = 0.01, h = 0.02) 8.003 1.802 – – 0.5512 1.394
[15] (∆t = 0.01, h = 0.005) 6.401 1.281 1.874 3.001 0.5011 1.213
[16] (∆t = 0.01, h = 0.005) 5.470 1.281 1.396 2.289 0.4067 1.026
[18] (∆t = 0.01) – 0.300 – – – 0.936
[19] (h = 0.005∆t = 0.01) 5.483 1.281 1.404 2.302 0.4080 1.030
[20] (∆t = 10−5, h = 0.005) – – 1.352 2.287 – –
[21] (∆t = 10−5, h = 0.001) 1.934 0.3018 1.352 2.287 0.4067 1.026
[22] (∆t = 0.0001, h = 0.005) 1.909 0.2991 1.344 2.276 0.4053 1.025
[24] (∆t = 0.01, h = 0.005) 1.939 0.3029 1.366 2.307 0.4160 1.047
[25] (∆t = 0.01, h = 0.005) 5.470 1.281 1.396 2.288 0.4069 1.026

TABLE IXComparisons of the error norms at
various times for several υ values for
example 2.

t L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

Present method
(h = 0.0125, ∆t = 0.001)

[20]
(h = 0.005, ∆t = 10−5)

υ = 0.002

2 1.143813 3.678070 1.151 3.6923
4 0.949068 2.722907 0.9507 2.7279
6 0.829942 2.089229 0.8302 2.0931
10 0.683114 1.449166 0.6830 1.4501

Present method
(h = 0.01, ∆t = 0.001)

[21]
(h = 0.001, ∆t = 10−5)

υ = 0.0004

2 0.343409 1.619166 0.3437 1.6550
4 0.284483 1.219831 0.2847 1.2217
6 0.248707 0.931724 0.2488 0.9377
10 0.204669 0.648530 0.2048 0.6496

Present method
(h = 0.0125, ∆t = 0.001)

[24]
(h = 0.005, ∆t = 0.01)

υ = 0.0001

2 0.111533 0.772467 0.112962 0.818695
4 0.116509 0.640031 0.107709 0.640708
6 0.104917 0.532005 0.095058 0.498194
10 0.084805 0.371205 0.077383 0.344082

Example 3. As the third problem, we take the fol-
lowing modified Burgers equation with µ = 3:

ut + u3ux − υuxx = 0.

The initial and boundary conditions are used as

u(x, 0) = A sin
(πx
l

)
, u(0, t) = 0, u(l, t) = 0,

where A = 1 and l = π. The problem has an asymptotic
solution as follows [45]:

u(x, t) = f0(x, t) exp(−kt) + f1(x, t) exp(−4kt)

+f2(x, t) exp(−7kt) + . . . ,

where
k = υπ2/l2, f0(x, t) = A1 sin

(πx
l

)
,

f1(x, t) = B1t sin

(
2πx

l

)
+B2 sin

(
4πx

l

)
,

B1 = −A4
1π/4l, B2 = A4

1l/96υπ, A1 = 0.365366,

f2(x, t) = g3(t) sin
(πx
l

)
+ g4(t) sin

(
3πx

l

)
+g5(t) sin

(
5πx

l

)
+ g6(t) sin

(
7πx

l

)
,

g3(t) = −l2
(
D1t+ E1 +

l2D1

6υπ2

)/
6υπ2

g4(t) = l2
(
D2t+ E2 −

l2D2

2υπ2

)/
2υπ2,

g5(t) = l2
(
D3t+ E3 −

l2D3

18υπ2

)/
18υπ2,

g6(t) = l2E4/42υπ2,

D1 = A3
1B1π/4l, E1 = −A3

1B2π/8l,

D2 = −9A3
1B1π/8l, E2 = 9A3

1B2π/8l,

D3 = 5A3
1B1π/8l, E3 = −15A3

1B2π/8l,

E4 = 7A3
1B2π/8l.

In order to compare the results with the previous works,
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TABLE X

Comparisons of the error norms at various times for υ =
0.005 for example 3.

t

Error
norm
×103

Present
h = 0.02,

∆t = 0.01

[17]
h = 0.01,
∆t = 0.01

[21]
h = 0.005,
∆t = 10−5

[22]
h = 0.005,

∆t = 0.0001

[24]
h = 0.005,
∆t = 0.01

150
L2 6.127935 3.227 6.1258 6.1237 6.128090
L∞ 6.845355 5.172 6.8400 6.8252 6.845380

200
L2 2.229242 0.991 2.2273 2.2181 2.229470
L∞ 2.045451 1.671 2.0416 2.0231 2.045900

250
L2 0.913681 0.5031 0.91238 0.90306 0.914486
L∞ 0.836173 1.400 0.83351 0.81642 0.839436

300
L2 0.4145668 0.5939 0.41341 0.40256 0.416609
L∞ 0.3974457 1.452 0.39559 0.38132 0.399913

350
L2 0.2319149 0.6940 0.23070 0.21750 0.234546
L∞ 0.2199448 1.488 0.21860 0.20661 0.221936

400
L2 0.1628484 0.7567 0.16168 0.14767 0.165391
L∞ 0.1426408 1.513 0.14160 0.13131 0.144269

450
L2 0.1293832 0.7990 0.12836 0.11516 0.131525
L∞ 0.1044738 1.531 0.10361 0.09461 0.105834

Fig. 9. The numerical and asymptotic solutions of ex-
ample 3 at various times using the parameters h = 0.02,
∆t = 0.01 and υ = 0.005 (dots — asymptotic, solid line
— numerical).

the value of viscosity υ is taken to be 0.005, and the
space and time steps are preferred as 0.02 and 0.01, re-
spectively, for the experiments. The process started from
the time t = 150 then runs up to the time t = 450. The
obtained results in terms of L2, L∞ error norms are listed
in Table X with the results of some previous studies.

Fig. 10. Absolute errors for example 3 using υ = 0.005,
h = 0.02 and ∆t = 0.01.

Fig. 11. (a) L2 and (b) L∞ errors for example 3 using
υ = 0.005, h = 0.02 and ∆t = 0.01.

It is seen from the table that the errors decrease as the
time progresses, and produced results are in good agree-
ment with the literature. The produced results are espe-
cially close to the results given by the studies [21, 22] us-
ing some finite difference based methods, and it is noted
that our results are produced by using fewer number of
grids as seen in Table X.

Behavior of the wave in terms of the numerical and
asymptotic solutions are shown in Fig. 9 for different
times. It can be observed from the figure that the nu-
merical behavior of wave appears a little different from
the asymptotic behavior at time t = 150 while there are
no visible differences between them as the time goes on,
especially for t ≥ 250. Also, the changes of absolute, L2

and L∞ errors are plotted in Figs. 10 and 11, respectively.
It is reasonable that the absolute error at time t = 150

changes frequently throughout the domain and gets the
maximum value around the midpoints since the numeri-
cal and asymptotic behaviors are exactly not overlapped.
Similarly, the maximum value of absolute error is around
the midpoints for t = 450 but it increases smoothly up
to midpoints in contrast to the changes of absolute error
at time t = 150.

4. Conclusion

Burgers equation is a simple form of the Navier–Stokes
equations and describes several physical phenomena such
as the shock wave behaviors, continuous stochastic pro-
cesses, sound waves in a viscous medium etc. There-
fore, the derivation of accurate, applicable and efficient
methods for simulation of these problems is both nec-
essary and important for technological and scientific de-
velopments in many disciplines. In this study, a hybrid
scheme including sixth order finite difference and sev-
enth order weighted essentially non-oscillatory finite dif-
ference schemes is introduced and applied to carry out
effective numerical simulations of shock wave propagat-
ing represented by the Burgers equation and its modified
form. The efficiency, accuracy, and applicability of the
proposed technique are examined by some test problems
for several values of viscosity, and the performance of the
method is measured by some error norms. The obtained
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results, even for small viscosity values caused to occur
shock behavior, are in good agreement with the litera-
ture. Moreover, some produced results are considerably
better than some of the given results in literature in terms
of accuracy. Therefore, the suggested scheme is a good
alternative in terms of both accurate results produced by
it and relatively is able to come to the forefront due to
its low cost and easy implement for scientists.

Acknowledgments

This research was supported by Suleyman Demirel
University through Scientific Research Project Program
(3539-D1-13).

References

[1] H. Bateman, Mon. Weather Rev. 43, 163 (1915).
[2] J.M. Burgers, Verh. Kon. Ned. Akad. Wet. 17, 1

(1939).
[3] J.M. Burgers, Adv. Appl. Mech. 1, 171 (1948).
[4] A. Dogan, Appl. Math. Comput. 157, 331 (2004).
[5] S. Kutluay, A. Esen, I. Dag, J. Comput. Appl. Math.

167, 21 (2004).
[6] I. Dag, D. Irk, B. Saka, Appl. Math. Comput. 163,

199 (2005).
[7] B. Saka, I. Dag, Chaos Soliton Fract. 32, 1125

(2007).
[8] R.C. Mittal, R.K. Jain, Appl. Math. Comput. 218,

7839 (2012).
[9] S.S. Xie, S. Heo, S. Kim, G. Woo, S. Yi, J. Com-

put. Appl. Math. 214, 417 (2008).
[10] A. Korkmaz, I. Dag, Eng. Comput. 28, 654 (2011).
[11] I.A. Hassanien, A.A. Salama, H.A. Hosham,

Appl. Math. Comput. 170, 781 (2005).
[12] W. Liao, Appl. Math. Comput. 206, 755 (2008).
[13] M. Sari, G. Gürarslan, Appl. Math. Comput. 208,

475 (2009).
[14] M.A. Ramadan, T.S. El-Danaf, F.E.I. Abd Alaal,

Chaos Soliton Fract. 26, 795 (2005).
[15] M.A. Ramadan, T.S. El-Danaf, Math. Comput. Sim-

ulat. 70, 90 (2005).
[16] B. Saka, I. Dag, J. Franklin Inst. 345, 328 (2008).
[17] Y. Duan, R. Liu, Y. Jiang, Appl. Math. Comput.

202, 489 (2008).
[18] R.S. Temsah, Commun. Nonlinear Sci. 14, 760

(2009).
[19] D. Irk, Kybernetes 38, 1599 (2009).
[20] A.G. Bratsos, in: Proc. HERCMA 2009, 9th

Hellenic-European Conf. on Computer Mathematics
and Its Applications, Athens 2009.

[21] A.G. Bratsos, Comput. Math Appl. 60, 1393 (2010).
[22] A.G. Bratsos, L.A. Petrakis, Int. J. Nu-

mer. Meth. Biomed. Eng. 27, 232 (2011).
[23] V. Gupta, M.K. Kadalbajoo, Neural Parallel

Sci. Comput. 18, 167 (2010).
[24] T. Roshan, K.S. Bhamra, Appl. Math. Comput. 218,

3673 (2011).
[25] S. Kutluay, Y. Ucar, N.M. Yagmurlu,

Bull. Malaysian Math. Soc. 39, 1603 (2016).
[26] Y. Shen, G. Zha, in: 46th AIAA Aerospace Sciences

Meeting and Exhibit, Reno (Nevada, USA), AIAA
2008-0757, 2008.

[27] Y. Shen, G. Zha, in: 48th AIAA Aerospace Sci-
ences Meeting Including the New Horizons Forum and
Aerospace Exposition, Orlando (Florida, USA), AIAA
2010-1451, 2010.

[28] D.S. Balsara, C.W. Shu, J. Comput. Phys. 160, 405
(2000).

[29] Y.H. Zahran, M.M. Babatin, Appl. Math. Comput.
219, 8198 (2013).

[30] G.S. Jiang, C.W. Shu, J. Comput. Phys. 126, 202
(1996).

[31] Z.J. Wang, R.F. Chen, J. Comput. Phys. 174, 381
(2001).

[32] D. Ponziani, S. Prizzoli, F. Grasso, Int. J. Nu-
mer. Meth. Fl. 42, 953 (2003).

[33] S. Pirozzoli, J. Comput. Phys. 178, 81 (2002).
[34] D. Kim, J.H. Kwon, J. Comput. Phys. 210, 554

(2005).
[35] Y.Q. Shen, G.W. Yang, Int. J. Numer. Meth. Fl. 53,

531 (2007).
[36] M. Sari, G. Gürarslan, A. Zeytinoglu, Nu-

mer. Meth. Part. D E 27, 1313 (2011).
[37] A. Zeytinoglu, M.Sc. Thesis, Suleyman Demirel Uni-

versity, Turkey 2010.
[38] X.D. Liu, S. Osher, T. Chan, J. Comput. Phys. 115,

200 (1994).
[39] P. Xie, Ph.D. Thesis, The University of Texas, 2007.
[40] R.H. Pletcher, J.C. Tannehill, D.A. Anderson, Com-

putational Fluid Mechanics and Fluid Transfer, Tay-
lor and Francis, 2013.

[41] H. Nguyen, J. Reynen, in: Numerical Methods
for Nonlinear Problems, Eds. C. Taylor, E. Hinton,
D.R.J. Owen, Pineridge, Swansea 1984, p. 718.

[42] R.J. LeVeque, Numerical Methods for Conservation
Laws, Birkhauser Verlag, 1992.

[43] M. Landajuela, Burgers Equation, BCAM Internship,
2011.

[44] S.E. Harris, Eur. J. Appl. Math. 7, 201 (1996).
[45] P.L. Sachdev, C.S. Rao, B.O. Enflo,

Stud. Appl. Math. 114, 307 (2005).

http://dx.doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
http://dx.doi.org/10.1016/S0065-2156(08)70100-5
http://dx.doi.org/10.1016/j.amc.2003.08.037
http://dx.doi.org/10.1016/j.cam.2003.09.043
http://dx.doi.org/10.1016/j.cam.2003.09.043
http://dx.doi.org/10.1016/j.amc.2004.01.028
http://dx.doi.org/10.1016/j.amc.2004.01.028
http://dx.doi.org/10.1016/j.chaos.2005.11.037
http://dx.doi.org/10.1016/j.chaos.2005.11.037
http://dx.doi.org/10.1016/j.amc.2012.01.059
http://dx.doi.org/10.1016/j.amc.2012.01.059
http://dx.doi.org/10.1016/j.cam.2007.03.010
http://dx.doi.org/10.1016/j.cam.2007.03.010
http://dx.doi.org/10.1108/02644401111154619
http://dx.doi.org/10.1016/j.amc.2004.12.052
http://dx.doi.org/10.1016/j.amc.2008.09.037
http://dx.doi.org/10.1016/j.amc.2008.12.012
http://dx.doi.org/10.1016/j.amc.2008.12.012
http://dx.doi.org/10.1016/j.chaos.2005.01.054
http://dx.doi.org/10.1016/j.matcom.2005.04.002
http://dx.doi.org/10.1016/j.matcom.2005.04.002
http://dx.doi.org/10.1016/j.jfranklin.2007.10.004
http://dx.doi.org/10.1016/j.amc.2008.01.020
http://dx.doi.org/10.1016/j.amc.2008.01.020
http://dx.doi.org/10.1016/j.cnsns.2007.11.004
http://dx.doi.org/10.1016/j.cnsns.2007.11.004
http://dx.doi.org/10.1108/03684920910991568
http://dx.doi.org/ 10.1016/j.camwa.2010.06.021
http://dx.doi.org/10.1002/cnm.1294
http://dx.doi.org/10.1002/cnm.1294
http://dx.doi.org/10.1016/j.amc.2011.09.010
http://dx.doi.org/10.1016/j.amc.2011.09.010
http://dx.doi.org/10.1007/s40840-015-0262-6
http://dx.doi.org/10.2514/6.2008-757
http://dx.doi.org/10.2514/6.2008-757
http://dx.doi.org/10.2514/6.2010-1451
http://dx.doi.org/10.2514/6.2010-1451
http://dx.doi.org/10.2514/6.2010-1451
http://dx.doi.org/10.1006/jcph.2000.6443
http://dx.doi.org/10.1006/jcph.2000.6443
http://dx.doi.org/10.1016/j.amc.2013.02.020
http://dx.doi.org/10.1016/j.amc.2013.02.020
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1006/jcph.2001.6918
http://dx.doi.org/10.1006/jcph.2001.6918
http://dx.doi.org/10.1002/fld.564
http://dx.doi.org/10.1002/fld.564
http://dx.doi.org/10.1006/jcph.2002.7021
http://dx.doi.org/10.1016/j.jcp.2005.04.023
http://dx.doi.org/10.1016/j.jcp.2005.04.023
http://dx.doi.org/10.1002/fld.1286
http://dx.doi.org/10.1002/fld.1286
http://dx.doi.org/10.1002/num.20585
http://dx.doi.org/10.1002/num.20585
http://dx.doi.org/10.1006/jcph.1994.1187
http://dx.doi.org/10.1006/jcph.1994.1187
http://dx.doi.org/10.1007/978-3-0348-8629-1
http://dx.doi.org/10.1007/978-3-0348-8629-1
http://dx.doi.org/10.1017/S0956792500002291
http://dx.doi.org/10.1111/j.0022-2526.2005.01551.x

