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This paper presents a model of molecular ultrathin crystalline film and analysis of dielectric properties of

these spatially very restricted structures. Using the two-time dependent Green functions the energy spectrum
and possible exciton states were determined and the dynamic permittivity was calculated. It was shown that the
appearance of localized states in the boundary layers of the film depend on the thickness and the changing values
of parameters in the border areas of the film. These localized states define schedule and determine the number of
resonant absorption lines in the infrared area of the external electromagnetic radiation.
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1. Introduction

Theoretical investigations of low-dimensional crys-
talline systems (nanostructures: ultrathin films, quan-
tum wires, points, etc.) have been intensified recently
in order to obtain fundamental information relating to
extremely different physical and chemical properties of
material, and also due to their wide practical applica-
tion (technical and technological) in nano, opto, and bio-
electronics [1–3]. Specificity of these “tiny” structures is
that presence of near border planes causes highly changed
general properties of these materials and occurrence of
nonspecific phenomena (as a consequence of confinement
effects [2]) in comparison to the properties of correspond-
ing “large” samples [4–6].

This paper analyzes the influence of borderline film-
structure presence on energy spectrum of excitons (ex-
citon dispersion law). Special attention was paid to the
occurrence and spatial distribution of localized exciton
states. In addition, optical properties were investigated
(their dielectric permeability was determined). Results
obtained were compared to the results of ideal infinite
crystals, in order to find most important differences be-
tween these two systems.

Interest in the study of exciton subsystem appeared
because excitons are responsible for dielectric, optic (ab-
sorption, dispersion, luminescence), photoelectric and
other properties of crystals [7–9].

Analyses were done using the innovated method of
Green functions, adapted for investigation of quantum
structures [10–14]. Due to adequately incorporated
statistics, this method is successfully applied in calcu-
lating both microscopic and macroscopic, balanced and
imbalanced, properties of crystals.
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2. Exciton model

Optic and dielectric properties of molecular crystal are
dictated by the behavior of excitons of small concentra-
tion in the Frenkel exciton subsystem [7–9]. This model
mirrors standard exciton Hamiltonian in configuration
space

Hex = H0 +
∑
n

∆nP
+
n Pn +

∑
n,m

XnmP
+
n Pm

+
∑
n,m

YnmP
+
n PnP

+
mPm, (2.1)

where P+
n and Pn are creation and annihilation opera-

tors of excitons on node n in a crystal lattice. ∆n is
the energy of exciton localized at node n, while Xn,m
and Yn,m are matrix elements of exciton transfer from
node n to node m 6= n.

Main difficulty in the exciton theory is the fact that
Pauli operators P+ and P are neither the Bose nor
Fermi operators, but a certain hybrid of both [15], and
their kinematics is fermionic for one node and bosonic
for different nodes. For precise analysis of exciton sys-
tems, encompassing effects of inter-exciton interaction is
not enough to simply replace the Pauli operators by the
Bose operators. When studying dielectric response of the
Frenkel excitons system with very small concentration
on external perturbation (variable electromagnetic field)
it is enough to use this rough approximation [12, 16]:
P, P+ → B,B+. Thus, effective exciton Hamiltonian in
harmonic approximation is†

H ≡ Heff =
∑
n

∆nB
+
nBn +

∑
n,m

XnmB
+
nBm. (2.2)

†It should be mentioned that in a huge amount of molecular
crystals the optical and transfer properties depend on charge trans-
fer (CT)/exciton (FE) coupling. For a model system of the Frenkel
excitons in molecular crystals (of anthracene type) those couplings
must be neglected [9].
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Theoretical analysis will be performed using the commu-
tation Green function [17–19]:

Gnm(t) = 〈〈Bn(t) | B+
m(0)〉〉 =

Θ(t)〈
[
Bn(t), B

+
m(0)

]
〉, (2.3)

which satisfies equation of motion [12, 16, 18]:

i~
d

dt
Gnm(t) = i~δ(t)〈

[
Bn(t), B

+
m(0)

]
〉

+Θ(t)〈[Bn(t), H]B+
m(0)−B+

m(0) [Bn(t), H]〉. (2.4)
Using standard commutation relations for Bose opera-
tors [19], Eq. (2.4) now transforms to

i~
d

dt
Gnm(t) = i~δ(t)δnm +∆nGnm(t)

+
∑
l

XnlGlm(t). (2.5)

We solve this, by time differentiated, equation using time
Fourier transformation

δ(t) =
1

2π

+∞∫
−∞

dω e− iωt; fab(t) =

+∞∫
−∞

dωfab(ω)e
− iωt, (2.6)

thus, we obtain

~ωGnm(ω) =
i~
2π
δnm +∆nGnm(ω)

+
∑
l

XnlGlm(ω). (2.7)

For a crystal with primitive cubic lattice, we can use
nearest neighbor approximation (l→ n±λi, i = x, y, z):
n ± λ1 = nx ± 1, ny, nz; n ± λ2 = nx, ny ± 1, nz and
n±λ3 = nx, ny, nz±1, so equation above is transformed
into

~ωGnxnynz,mxmymz (ω) =
i~
2π
δnxnynz,mxmymz

+∆nxnynzGnxnynz,mxmymz (ω)

+
[
Xnxnynz ;nx+1,nynzGnx+1,nynz ;mxmymz (ω)

+Xnxnynz ;nx−1,nynzGnx−1,nynz ;mxmymz (ω)

+Xnxnynz ;nxny+1,nzGnxny+1,nz ;mxmymz (ω)

+Xnxnynz ;nxny−1,nzGnxny−1,nz ;mxmymz (ω)

+Xnxnynz ;nxnynz+1Gnxnynz+1;mxmymz (ω)

+Xnxnynz ;nxnynz−1Gnxnynz−1;mxmymz (ω)
]
. (2.8)

3. Ultrathin exciton films

Here we will observe very thin (several nm) film
with cubic crystalline structure, made on substrate by
some technological process (steaming, reaching, spray-
ing, etc.) [4–6]. The term ideal here is not used in the
sense of unlimited space and presence of translational in-
variance for relevant energy parameters but in the sense

that the inner structure is not violated by any means
(no defects, impurities, etc.). Film dimensions are such
that they are infinite in XY planes, while along z-axis
has final thickness (L). Therefore, this film has two in-
finite border areas parallel to XY -plane, for: z = 0 and
z = L ≡ Na (Fig. 1).

As a consequence of changed conditions on the bor-
ders of observed structure, we take that exciton energies
in border (nz = 0, nz = N) and adjacent plane (nz = 1,
nz = N − 1) are perturbed, i.e.:

∆n ≡ ∆ (1 + d0δnz,0 + dNδnz,N ) ,

Xn,n+λz ≡ Xz (1 + x0δnz,0 + xNδnz,N−1) ,

Xn,n−λz ≡ Xz (1 + x0δnz,1 + xNδnz,N ) .

Values of parameter d are defining energy change of iso-
lated molecule at border area, and x is energy perturba-
tion in the exciton transfer from first inner atomic plane
to border area, i.e. in border layers along z-axis.

Since border areas of the film are taken perpendicu-
lar to z-axis, index of parallel XY planes nz has values
nz = 0, 1, 2, . . . N , where N ∈ [2, 10] in ultra thin films.
Indices nx and ny, determining position of molecule in
any XY plane, can have arbitrary whole-number values
(practically from −∞, to +∞).

(1+ )x0

(1+    )d0

(1+ )x

(1+    )d

N

N

Fig. 1. Film cross-section in X(Y )Z plane.

Due to a spatial limitation film along z-, to Eq. (2.8)
only a partial spatial Fourier transformation may be ap-
plied (only along x and y axes):

δnm =
1

NxNy

∑
kxky

e ikxax(nx−mx) e ikyay(ny−my)δnzmz ,

fnm(ω) =
1

NxNy

∑
kxky

e ikxax(nx−mx) e ikyay(ny−my)

×fnzmz (kx, ky, ω). (3.1)
In order to shorten notation, it is suitable to intro-
duce next denotations Gnzmz ≡ Gnzmz (kx, ky, ω) and
K ≡ i~

2π|X| . With Xx = Xy = Xz ≡ − |X| and
ax = ay = az ≡ a, we obtain
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Gnz−1,mz (1 + x0δnz,1 + xNδnz,N ) +Gnz+1,mz

× (1 + x0δnz,0 + xNδnz,N−1) +Gnzmz

×
[
%− ∆

|X|
(d0δnz,0 + dNδnz,N )

]
= Kδnz,mz (3.2)

by replacing

% =
~ω −∆

|X|
+ 2 (cos akx + cos aky) . (3.3)

Equation (3.2) is in fact a system of N + 1 nonhomoge-
neous algebraic-differential equations with (start-border)
conditions: Gnz,mz = 0, for nz < 0 and nz > N + 1.

4. Dispersion law of excitons

In order to find a spectrum of exciton energies, we
need poles of the Green functions, which are obtained
when a determinant of a system (3.2) is identically
equalized to zero [12–14], i.e.

DN+1(%) = (4.1)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

%+ ∆
|X|d0 1+x0 0 0 · · · 0 0 0 0

1+x0 % 1 0 · · · 0 0 0 0

0 1 % 1 · · · 0 0 0 0

· · · ·
. . . · · · ·

0 0 0 0 · · · 1 % 1 0

0 0 0 0 · · · 0 1 % 1+xN
0 0 0 0 · · · 0 0 1+xN %+ ∆

|X|dN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N+1

≡0.

From Eq. (3.3) the law of exciton dispersion: Ek ≡
~ω(k) can be shown in non-dimensional form
Ekxky (ν) = (4.2)

Fxy + Gz(ν),

{
Fxy = −2 (cos akx + cos aky) ,

Gz(ν) ≡ %ν ,

where %ν (ν = 1, 2, . . . N +1) are roots of upper determi-
nant, depending on five parameters: number of atomic
layers N and in perturbation values d0/N and x0/N . Cal-
culation of roots, i.e. poles of the Green functions, due
to impossibility of finding analytic solution (except in an
ideal film case [12–14]), was found numerically and pre-
sented graphically (see Appendix A). The calculations
are, due to the inability to find general analytical solu-
tions, made with the help of adequate software (which
we developed ourselves; see Appendix B for correspond-
ing code lines).

Condition (4.1) will be solved for case of perturbed
molecular film with five crystalline atomic planes along z-
axis (two border planes and three within the film, i.e. 4 in-
teratomic layers, therefore N = 4). Border parame-
ters will have changed values in the following intervals:

{d0, dN} ∈ [−0.3;+0.3] and {x0, xN} ∈ [−0.8;+2.0]‡.
In this way we investigated and analyzed over 1 200 dif-
ferent cases (with different values of parameters d0, dN ,
x0 and xN and only one value of the parameter N = 4).

In the numerical procedure we had to have control
points. First, when the parameters were taking values
d0 = dN = x0 = xN ≡ 0, we had to get analytically
solvable case — ideal ultrathin film described in the pre-
vious footnote. We received other checkpoints from the
symmetry of the problem, i.e. the model. Replacements:
d0 � dN and x0 � xN had to have the same result be-
cause these operations would correspond to rotations or
capsize of the film up � down. In all these situations,
we were totally satisfied!

Important results of these calculations are shown in
Figs. 2–4: ordinates show values for reduced nondi-
mensional energies Ekxky (ν) depending on nondimen-
sional function Fxy (on the abscissa) and parameter
ν = 1, 2, 3, 4 and 5.

Figure 2 shows energy spectrum for excitons in four-
layered molecular film (full lines) when molecule en-
ergy changes at the node of border planes (nz = 0 and
nz = N): ∆0,N = (1 + d0,N )∆.

Fig. 2. Exciton energies of d-perturbed film.

Analyzing these graphs, we may conclude that by in-
creasing (or decreasing) parameter d, spectrum of pos-
sible exciton energies widens, moving toward higher
(or lower) energies. This moving occurs in such a way
that one or two energy levels are “expelled” outside the
bulk zone (marked by dotted lines). Levels are more dis-
tant from bulk zone if the perturbation is higher, i.e. if pa-
rameter d is higher in the absolute value. These separated
states are known as Tamm’s or localized states [4–6].

‡Energies of isolated excitons may not be different for more
than ±30%, since it would drastically disturb relation between ∆
and X, and by that, we would deviate from basic presumptions of
the Frenkel excitons. Transfer energies in border layers (X) may
not be reduced for more than 99.99̇%, since in that case also there
are no interactions of molecules from border planes and their ad-
jacent, inner-film, planes. If we take {x0, xN} ≤ −1, then the
character of intermolecular interaction will change (attraction ⇔
repulsion). If we take {x0, xN} ≥ 2, that will strongly disrupt rela-
tion between ∆ and X, and that will mean that a type of molecular
crystal is changed where the Frenkel excitons are being formed [7–9]
and those are the subject of consideration here.
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The number of localized states depends on the intensity
of disturbance of the energy parameters of atoms from
border areas.

Figure 3 shows reduced energies of excitons of four-
layered molecular film (full lines) when exciton transfer
energy changes (intermolecular interaction) between bor-
der planes and adjacent planes (nz = 0 and nz = 1,
i.e. nz = N and nz = N − 1): X0,N = (1 + x0,N )X.

By analyzing these graphs it is possible to conclude
that increase of parameter x symmetrically widens spec-
trum of possible exciton energies, by the equal moving
towards higher and lower energies. This widening occurs
in the way that at the same time two or even four en-
ergy levels are “expelled” outside bulk zone (dotted lines).
These levels of the localized states are further away from
bulk zone if perturbation is higher, i.e. if x parameter is
higher. Lowering the parameter x brings the minor nar-
rowing inside energy levels, while width of whole spec-
trum stays practically the same and in this case there is
no localized states.

Fig. 3. Exciton energies of x-perturbed film.

Figure 4 shows reduced energies of excitons of four-
layered molecular film (full lines): left for totally unper-
turbed border parameters (d0 = dN = 0; x0 = xN = 0)
and right for the strongest perturbed border parameters
(d0 = dN = 0.3; x0 = xN = 2.0). In unperturbed case,
there are no localized states [12], which are evident and
strongly expressed for strong perturbation.

Fig. 4. Exciton energies of strongly perturbed film.

From all graphs, it is visible that the energy states of
excitons in films are discrete. The opposite from continu-
ous bulk zone, here can be as many energy levels as there
are two-dimensional states, and we considered ultra thin
film with 4 layers or 5 planes, i.e. with five possible energy
levels. Localized states were found, but it is necessary to
do a more detailed analysis of their spatial distribution
and probability of their appearance. Also, when compar-
ing Figs. 2 and 3 with Fig. 4, it is easy to find dominant

influence of energy perturbation ∆ (in comparison to X)
and that effects caused by increase of parameter x are
silenced by presence of parameter d.

5. Exciton states

In order to determine the exciton Green functions,
equation system (3.2) was represented in the matrix form

D̂N+1G̃N+1 = K̃N+1, (5.1)
where D̂N+1 is the matrix corresponding to determinant
of system DN+1, and G̃N+1 and K̃N+1 are vectors of the
Green functions and Kronecker’s deltas:

G̃N+1 =



G0,mz

G1,mz
...

Gnz,mz
...

GN,mz


;

K̃N+1 = − i~
2π |X|



δ0,mz
δ1,mz
...

δnz,mz
...

δN,mz


. (5.2)

By acting with an inverse matrix D̂−1
N+1, from the left

side of Eq. (5.1), it follows:

G̃N+1 = D̂−1
N+1K̃N+1. (5.3)

Since the inverse matrix can be expressed using adjunct
one, where members Dik are co-factors of element dik in
direct matrix DN+1, it can be written

Gnz,mz =
1

DN+1

∑
q

Dnz,qKq,mz = (5.4)

− 1

DN+1

i~
2π |X|

∑
q

Dnz,qδq,mz = −
i~

2π |X|
Dnz,mz

DN+1
.

Considering that for balanced processes in a system only
the diagonal Green functions are important Gnz ;nz (%) ≡
Gnz , calculating co-factor Dnz,mz (%) ≡ Dnz is signifi-
cantly simplified

Dnz = Bnz (%)×BN−nz (%), (5.5)

Bnz =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

%+ ∆
|X|d0 1 + x0 0 · · · 0 0 0

1 + xo % 1 · · · 0 0 0

0 1 % · · · 0 0 0

· · ·
. . . · · ·

0 0 0 · · · % 1 0

0 0 0 · · · 1 % 1

0 0 0 · · · 0 1 %

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
nz

;
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BN−nz =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

% 1 0 · · · 0 0 0

1 % 1 · · · 0 0 0

0 1 % · · · 0 0 0

· · ·
. . . · · ·

0 0 0 · · · % 1 0

0 0 0 · · · 1 % 1 + xN
0 0 0 · · · 0 1 + xN %+ ∆

|X|dN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
N−nz

with boundary conditions B0 = BN−N = 1.
The Green functions are multipolar [10–14], since the

denominator is a polynomialDN+1 of orderN+1. There-
fore, we must use the factorization of prime poles

Gnz = −
i~

2π|X|

N+1∑
ν=1

gnz (ν)

%− %ν
. (5.6)

On the basis of (5.4) to (5.7), it follows that expression:

gnz (ν) ≡ gnz (%ν) =
Bnz (%ν)BN−nz (%ν)

d
d%DN+1(%)

∣∣∣
%=%(ν)

(5.7)

represents spectral weights of the Green functions. These
are in fact probabilities of presence of state with %ν .
Therefore, gnz (ν) enable determination of spatial distri-
bution, i.e. probability of finding excitons with certain
energies per layers of crystalline film.§

Based on the formulae (5.5)–(5.8) it is clear that the
statistical weights, and spatial distribution of probabil-
ity for finding excitons states can be determined only
numerically, because we have five parameters, with over
1200 different combinations of their values: N = 4,
d0/N ∈ {−0.3,+0.3}∧x0/N ∈ {−0.8,+2.0} is done using
the adequate software (see Appendix B) and graphically
arranged.

In the following table with six sub-tables, values of re-
duced energies are represented with corresponding spec-
tral functions (spatial distribution of probability) for
four-layered film. In the case of the perturbed film,
the spectral weights for given exciton energies can be
found only by numerical methods, and results obtained
for some values of perturbed parameters in the film are
given for the center of Brillouin’s two-dimensional zone
(kx = ky = 0).

The first sub-table from the top gives spatial distri-
bution for probabilities of presence of exciton energies

§This gives clear criterion for distinction between collective,
bulk excitations (as described by flat and/or standing waves and
have approximately the same probability of finding along whole
section of a film) from localized excitations at the border areas
(whose spectral weights show sharp maximum at the border per-
turbed layer and suddenly decrease within the film). Usual periodic
dependence as a flat wave e ikn for voluminous states becoming
declining exponential dependence e−κn for localized states, where
basic condition is κ ≥ 0. As said above, a condition in which that
wave vector κ takes imaginary values κ = − ik, is reduced to the
condition |%| ≥ 2, which shows that energies of localized states are
outside continuous zone of bulk exciton energies.

in ideal exciton film (without perturbation of border pa-
rameters), see Appendix C. Other two sub-tables show
spatial probabilities of finding exciton in the observed
film when only d0 or dN parameters are changing, while
other perturbation parameters are equal to zero. The en-
ergies whose values are outside bulk zone (i.e. localized
exciton states), as well as the highest values of probabili-
ties (per film layers) for those energies, are shown in bold
numbers. Increasing parameter d0 shows that even spa-
tial localization of excitons is increasing exactly at border
areas of a film.

Next two sub-tables show spatial probabilities of find-
ing excitons in the four-layered molecular film, but now
for the case when only x0 or xN parameters are chang-
ing, while other perturbation parameters are equal to
zero. Both energies whose values are outside bulk zone
(i.e. localized exciton states)and their highest values of
probability (per layer of film) are also shown in bold num-
bers. For higher values of these parameters two or even
four localized exciton states are present, with the highest
spectral weights of excitons. Therefore, by increasing pa-
rameter x probability of finding exciton at the border and
first inner layers of ultra thin molecular film increases,
so it is almost certain that exciton will be found at the
first or second (or last and one before last) film layer.
The last sub-table shows distribution of exciton states
when border parameters are most perturbed. Presence
of four localized states is evident with equal probabilities
of finding exciton in the first border layer, i.e. at border
areas and in the first inner planes. In addition, it is vis-
ible that parameter d has dominant influence, since all
effects obtained by parameter x are silenced.

In order to overview these results, we have their
graphic presentation — in Figs. 5 and 6 we will show
the most interesting cases.

From all sub-tables (in Table I) and from all graphs (in
Figs. 5 and 6) it is visible that at every node of a crys-
talline layer there is exactly one exciton, which may be
in N+1 = 5 different energy states, with different proba-
bilities of finding. For arbitrary number of atomic planes
in film (N + 1) the following relation is valid, pointing
that a sum of all probabilities for finding exciton is equal
to the number of possible states

N+1∑
ν=1

N∑
nz=0

gνnz (%ν) = N + 1, (5.8)

which include the both bulk (voluminous) and localized
states.

6. Ultrathin films permittivity

To determine the crystalline film dynamic permittiv-
ity, as in [10–14], we will use formula of Dzyaloshinski–
Pitaevski [18]:

ε−1
nz (ω) = 1− πS|X|

i~
[Gnz (ω) +Gnz (−ω)] . (6.1)

with a note that permittivity here depends on the posi-
tion of film plane (nz). Substituting expression for the
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Fig. 5. Space distribution of exciton states in ultrathin
molecular film.

Fig. 6. Space distribution of exciton states in ultrathin
molecular film.

TABLE I

Probabilities of finding excitons in four-layered film.

Reduced
relative

d0 = dN = 0.0; x0 = 0.0; xN = 0.0

energy 1st plane 2nd plane 3rd plane 4th plane 5th plane
−1.73205 0.08333 0.25000 0.33333 0.25000 0.08333
−1.00000 0.25000 0.25000 0.00000 0.25000 0.25000
0.00000 0.33333 0.00000 0.33333 0.00000 0.33333
1.00000 0.25000 0.25000 0.00000 0.25000 0.25000
1.73205 0.08333 0.25000 0.33333 0.25000 0.08333
Reduced
relative

d0 = 0.2; dN = 0.0; x0 = 0.0; xN = 0.0

energy 1st plane 2nd plane 3rd plane 4th plane 5th plane
−1.63052 0.00113 0.15231 0.36334 0.35115 0.13208
−0.65266 0.00330 0.37422 0.11685 0.15104 0.35459
0.58054 0.00386 0.34278 0.16164 0.12395 0.36777
1.60263 0.00171 0.12079 0.35807 0.37386 0.14556
10.1000 0.99000 0.00990 0.00001 9.9×10−7 9.7×10−9

Reduced
relative

d0 = dN = 0.2; x0 = xN = 0.0

energy 1st plane 2nd plane 3rd plane 4th plane 5th plane
−1.45855 0.00195 0.25670 0.48268 0.25670 0.00195
−0.09901 0.00485 0.49514 0.00000 0.49514 0.00485
1.35757 0.00318 0.23825 0.51712 0.23825 0.00318

10.09901 0.49514 0.00485 0.00000 0.00485 0.49514
10.10099 0.49485 0.00504 0.000019 0.00504 0.49485
Reduced
relative

d0 = dN = 0.0; x0 = 2.0; xN = 0.0

energy 1st plane 2nd plane 3rd plane 4th plane 5th plane
−3.18168 0.43789 0.49254 0.06137 0.00746 0.00074
−1.37000 0.03579 0.00746 0.21079 0.49254 0.26242
0.00000 0.05263 0.00000 0.47368 0.00000 0.47368
1.37000 0.03579 0.00746 0.21079 0.49254 0.26242
3.18168 0.43789 0.49254 0.06137 0.00746 0.00074
Reduced
relative

d0 = dN = 0.0; x0 = xN = 2.0

energy 1st plane 2nd plane 3rd plane 4th plane 5th plane
−3.31663 0.20454 0.25000 0.09090 0.25000 0.20454
−3.00000 0.25000 0.25000 0.00000 0.25000 0.25000
0.00000 0.09090 0.00000 0.81818 0.00000 0.09090
3.00000 0.25000 0.25000 0.00000 0.25000 0.25000
3.31663 0.20454 0.25000 0.09090 0.25000 0.20454
Reduced
relative

d0 = dN = 0.3; x0 = xN = 2.0

energy 1st plane 2nd plane 3rd plane 4th plane 5th plane
−1.70891 0.00938 0.29119 0.39883 0.29119 0.00938
−0.57775 0.01788 0.48211 0.00000 0.48211 0.01788
1.12653 0.00891 0.19065 0.60086 0.19065 0.00891

15.57775 0.48211 0.01788 0.00000 0.01788 0.48211
15.58238 0.48169 0.01815 0.00029 0.01815 0.48169

Green functions (5.7), we obtain

ε−1
nz = 1− S

2

N+1∑
ν=1

∑
s=+,−

gνnz
%s − %ν

, (6.2)

where %± = ∓|f | − |p| − Fxy, and by arranging this ex-
pression it finally follows:
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εnz (ω)=

[
1+S

N+1∑
ν=1

gνnz
%ν−|p|+Fxy

|f |2− (%ν−|p|+Fxy)2

]−1

. (6.3)

Based on this and formula (5.8) it is clear that relative
permittivity depends on position, e.g. number of crystal-
lographic planes (nz = 0, 1, 2, ..., N) along the direction
of broken translational symmetry by existing of border
areas (perpendicular onto them), of course and on non-
dimensional energy/frequency of external electromag-
netic field. These functional dependences are mathemat-
ically very complicated and can be determined only nu-
merically. Beside that, in this case we have 5 (e.g. 6) pa-
rameters: N = 4 (nz = 0, 1, 2, 3, 4), d0/N ∈ {−0.3,+0.3}
and x0/N ∈ {−0.8,+2.0}, which means that we have 6000
different combinations of their possible values. That is
performed with the help of adequate software (see Ap-
pendix for corresponding code lines) and is graphically
arranged.
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Fig. 7. Dynamic permittivity of molecular film.

Figure 7 shows the dependence of dynamic permittiv-
ity (ε) on reduced relative energy of external electromag-
netic field (f ≡ ~ω/|X|), for four-layered molecular film.
Dependence was calculated for a center of plane (2D)
Brillouin’s zone (kx = ky = 0), but individually per plane
(parallel border areas) of crystalline film, therefore for
nz = 0 and/or 4, then nz = 1 and/or 3 and finally for
nz = 2.

For each graph there is shown the influence of border
parameters d0,N and x0,N both on the permittivity size
and shape of its dependence on external field frequency,

and on the number and position of resonant peaks¶. It is
clearly visible that there is a final number of resonant
peaks, since kz component of exciton wave vector is dis-
crete. Only for certain values of kz (for given values of
kx and ky) resonant phenomena and radiation absorption
may occur.

In the observed film (N = 4) the number of resonant
peaks is different for different layers. Therefore, at least
three and a maximum of five are present as much as there
are allowed states along axis where translation symmetry
is violated, in this case along z-axis). Their number de-
pends on the size of perturbation parameters at border
areas, i.e. in the border layers of a crystalline film and
this is in direct connection to the occurrence of localized
states for some determined values of border parameters.

First upper figure with 3 graphs shows the permittiv-
ity of the ideal ultra thin film with 4 inter-atomic layers.
In the second and third rows, Fig. 7 shows the depen-
dence of dynamic permittivity on reduced frequency of
outer electromagnetic field for four-layered dielectric film,
when parameter ∆ is changed by perturbation d0 or dN .

From this it is visible that a number of resonant peaks,
i.e. resonant lines (when ε(ωr) → ±∞) depends on the
number, i.e. position of atomic plane nz for which per-
mittivity is being calculated, but also from value of pa-
rameter d0/N . By increasing parameter d0/N widening of
absorption zone occurs, and dominating resonant peak
is visible only in the border area of the film (nz = 0 or
nz ≡ N = 4). This is expected, since analysis of spectral
weights for exciton states shows that probability of find-
ing an exciton in the localized state is higher at exactly
the same spot.

In the fourth and fifth row the dependence of dynamic
permittivity ε on reduced energy f of four-layered dielec-
tric film is shown, when parameter is x0/N). It is visible
that a number of resonant peaks for permittivity is dif-
ferent for every layer, i.e. ε = ε(nz), but it also depends
on parameter x0/N . After increasing value of this param-
eter, the symmetric widening of absorption zone occurs
towards both higher and lower values of energy for all
layers, but also some resonant peaks are being quenched
depending on position (film layer) for which permittivity
is determined. For instance, all resonant peaks exist only
for the border (nz = 0 and 4) and middle plane (nz = 2),
while in other planes they are quenched.

In the last row of figures dependence of this film per-
mittivity on frequency of outer field is shown, when all
border parameters are the most perturbed. It is evident
that the influence of perturbation parameter x is silenced

¶Resonant peaks in the frequency dependence of dynamic per-
mittivity are the positions resonant frequencies, where permittivity
diverges into ±∞. Those are also energies (wavelengths) of such
electromagnetic radiance that a model crystal “swallows” at the
given place, i.e. energies that are absolutely absorbed there. Fre-
quency of the outer field at which resonant peaks occur is obtained
from condition εnz →∞.
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and that dominating behavior is dictated by perturba-
tion d. Here two resonant absorptions occur in pair both
on border areas, but their distance is bigger than without
parameter x.

The subject of this research is not new and obtained re-
sults are in agreement with results applied in [12]. In con-
trast, in paper [12] there was introduced a new approach
for calculation of the optical absorption spectra of organic
polycrystalline thin films.

In particular, a new relation for molecular excitation
energy shifts due to dispersion effects of the environment
has been derived. The obtained formulae allow us to
determine level shift of the molecule from the site, de-
pending of the given nanoscale environment.

On that basis there could be explained dissimilarity of
the double structure transition in the absorption spec-
trum of PDCTI films by the coexistence of two molec-
ular phases. Large crystals, where most molecules are
located in the interior, give rise to the component on
the low-energy side. However, the blue shift is gener-
ally non-structured function, due to a phase of loosely
packed small aggregates which pass trough a weaker gas-
to-crystal phase, as most molecules reside at or close to
the surface.

Therefore, these results explain the absorption proper-
ties as disorder induced by the dispersive effects due to
non-resonant exciton coupling. In previous works [12, 21]
these properties are explained by strong resonant exciton
coupling in such a way that oscillator transfers power on
vibration modes. While a fully quantitative analysis of
the film morphology is beyond the scope of this work, our
findings emphasize that an explicit consideration of the
local energy structure is mandatory to understand the
optical properties of molecules in nano scaled solid-state
systems.

The polarized absorption spectra of crystalline pen-
tacene are obtained in [22] for excitation normal to the
ab herringbone plane by measuring transmitted light in
ultrathin crystals. The spectral line shapes for excitation
polarized along b and orthogonal to b are analyzed theo-
retically using a Holstein-like Hamiltonian which includes
both the Frenkel and charge transfer (CT) excitons rep-
resented in a multi-particle basis set. The model agrees
with prior estimates regarding the strong CT contribu-
tion (≈ 45%) of the exciton responsible for the b-pola-
rized lower Davydov component. The polarization reso-
lution allows one to also establish the nature of the upper
Davydov component, which is found to contain far less
CT content (≈ 15%), as well as the nature of the higher-
energy vibronic excitons, which are found to consist of
a complex mixture of the Frenkel one- and two-particle
states and CT excitons. Generally, the spectrum polar-
ized along b displays J-aggregate-like vibronic signatures
while the spectrum polarized orthogonal to b displays H-
aggregate-like vibronic signatures. The result is entirely
consistent with the calculated exciton band dispersion
which is in good agreement with experimental measure-
ment.

The absorption spectrum corresponding to the solution
and crystalline phase of pentacene is shown in [22]. Dra-
matic spectral changes appear after the crystallization
process. The two orthogonally polarized components are
shown, which has been obtained by rotating the polar-
izer through 90◦. The polarizer angle which maximizes
the peak at 14700 cm−1 coincides with the electric field
polarization along the crystallographic b-axis, according
to the ellipsometry and reflectivity calculations [23].

New nanomaterial — squaraines — has been intro-
duced [24] which offers significant potential for organic
photovoltaic devices due to their broad absorbance and
high extinction coefficients as well as their expected us-
age as mechanic probes in such devices. In this work are
taken all necessary steps to develop a comprehensive un-
derstanding of the excited-state properties of squaraines
based on their molecular structure and the resulting
solid-state packing. Accurate locations of the absorption
spectral peaks are calculated on the basis of an essential
model of states, which has been expanded to include in-
termolecular charge transfer (ICT). A comparison of sim-
ulated spectra with spectra for two symmetric squaraine
derivatives confirms that ICT has a major influence on
the optical and electronic properties of squaraine aggre-
gates, fully accounting for the origin of the strong pan-
chromaticity of these systems.

Comparing our research results with those obtained
in [22–25], which correspond to the near UV, visible and
deep IC region of electromagnetic field, one can conclude
good agreement for resonant absorption, which could
be attributed and explained with spatial and boundary
conditions, i.e. with effect of quantum confinement and
nanoscale dimensions of structures, exciton coupling and
overall dynamic of excitons. Different number and shape
of absorption lines appear due to the fact that we have in-
cluded only linear exciton spectra, while vibrational and
rotational contributions are neglected. Furthermore, an
important conclusion is that here are well defined posi-
tions of the central relative permittivity peaks and opti-
cal indices from the external electromagnetic field. Rel-
ative differences in compared spectra come from the dif-
ferent crystal samples (chemical or physical) which dic-
tate difference in collective absorption process and re-
distribution of exciton energy.

7. Conclusion

This paper describes the theoretical investigation of
specificity in microscopic and macroscopic properties of
exciton systems in the molecular ultra thin film struc-
tures. Most important results of these analysis are as
follows:

1. The energy spectrum of possible exciton energy was
determined:

(a) The dispersion exciton spectrum in the films is
discrete, and number of discrete levels is equal
to number of atomic planes of film along the



Consequences of Confinement Conditions. . . 137

axis of spatial limitation. In the bulk there
exists only one zone, where excitons “take on”
all possible energy values.

(b) The energy change of molecules at the nodes
of border planes causes movement spectrum
towards higher energy levels, and this move-
ment is happening in such a way that one or
two energy levels are “expelled” out of the bulk
zone, giving localized states.

(c) Increasing transfer energy of excitons in the
border layers causes movement of exciton
energy spectrum outside bulk borders, “ex-
pelling” two and even four energy levels.
These localized states are more distanced from
the bulk zone as perturbation is higher.

2. Contrary to the bulk structures, where excitons can
be found at any position with equal probability, in
the molecular film structures probabilities to find
excitons strongly depend on the film thickness and
intensity of parameter change at the border areas
of the film:

(a) Whether exciton will be separated at the bor-
der areas of a film depends on the perturbation
energy of molecules in those layers. The in-
crease of this energy proportionally increases
probability of exciton localization at the bor-
der areas, and these excitons have higher pos-
sible energies.

(b) Localization of excitons between border and
adjoining planes is determined by changes of
transfer energy of excitons between borders of
these layers. The increase of these parameters
causes the increase of probability to find exci-
tons in the border areas of the film considered.

3. In the molecular film structures, resonant peaks ex-
ist at precisely determined energies. Number of
these peaks depends on position of planes in the
film for which permittivity is calculated, but also
from the size of perturbation parameters:

(a) By changing energy values for molecules at
the border areas, absorption zone widens, and
dominating resonant peaks are visible only at
those border areas.

(b) By increasing vault energy of excitons in the
border layer of the film, symmetrical widening
of absorption zone occurs, and also quenching
certain inner resonant peaks.
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Appendix A: Calculation of roots

In an ideal ultrathin film there are no per-
turbations of border parameters (i.e. d0 = dN = 0,
x0 = xN = 0; “cut-off” case), so that the determi-
nant (4.1) represents Chebychev’s polynomial [12–14]:

DN+1(%) = CN+1(ζ) =
sin(N + 2)ζ

sin ζ
, % = 2 cos ζ,

where Chebychev’s polynomials satisfy the known re-
current relationship of the form: Cn+1(x) = xCn(x) −
Cn−1(x). From the condition (4.1), i.e. for CN+1 ≡ 0, we
obtain: ζν = πν

N+2 , where ν = 1, 2, 3, . . . , N + 1. On the
basis of this and Eq. (3.4), we find

~ων = ∆− 2|X|
(
cos akx + cos aky − cos

πν

N + 2

)
.

In comparison with the dispersion law of excitons in the
bulk we will write this expression in simplified and di-
mensionless form (%ν = −2 cos azkz(µ)):
Ekxky (µ/ν) = Fxy + Gz(µ/ν),

Gz(µ/ν) =
1

2
[1− cos azkz(µ)] ≡

2 + %ν
4

.

Previous expression is the law of excitons dispersion
of the ideal molecular film and has the same form as
the expression for the energy of excitons corresponding
ideal not limited structure [7–9], with the difference that
there kz is virtually continuous variable (in the interval
[0, π/a]) as well as kx and ky, and here is discrete and is
given by the expression

kz(µ) =
π

a

µ

N + 2
.

where next change of indices is introduced µ = N+1−ν,
µ = 1, 2, 3 . . ., N + 1.

Appendix B: Necessary software package

Calculation and graphic presentation of the:

1. possible exciton energy states
2. probability and spatial distribution of exciton

states
3. frequency dependence of dynamical permittivity

1. d = .
d[n_] := r*d[n - 1] - d[n - 2]
d[0] := 1
d[-1] := 0
d[-2] := 0
d[-3] := 0
d[-4] := 0
d[1] := r
d[2] := r2 - 1
n = 4
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Frac = 50 (* "Frac" represents the ratio of energy at node
and energy transfer *)
"At this point Chebychev polynomials are defined and the
number of film layers is set (n)"
e0 = 0 (* Set the value of -0.3 to +0.3 *)
"Repair of exciton energy at the bottom border area"
en = 0 (* Set the value of -0.3 to +0.3 *)
"Repair of exciton energy at the upper border area"
v0 = 0 (* Set the value of -0.8 to +2.0 *)
"Repair of exciton energy transfer at the bottom border
areas"
vn = 0 (* Set the value of -0.8 do +2.0 *)
"Repair of exciton energy transfer at the upper border area"
k = .
r = .
m = .
s = .
Do[{k = jπ

10
, rr = N[Solve[(r - Frac*e0)(r - Frac*en) d[n - 1]

- ((r - Frac*e0)(1 + vn)2 + (r - Frac*en)(1 + v0)2) d[n - 2]
+ (1 + v0)2 (1 + vn)2 d[n - 3] == 0, r]], rrr =
Table[Re[Sort[r/.rr]]],
s[{j}] = Table[{N[-4 Cos[k]], N[rrr[[i]] - 4 Cos[k]]}, {i, 1, n +
1}], Print[s[{j}]],
m = Table[{s[{0}], s[{1}], s[{2}], s[{3}], s[{4}], s[{5}], s[{6}],
s[{7}],
s[{8}], s[{9}], s[{10}]}]}, {j, 0, 10}]
(* j is the number of points by which the dispersion lines
are drawn. 10 are selected. Equation is solved in which
the Chebyshev polynomials are described, and solutions are
the energies r. That energies are then sorted and form
the matrices s and m in which pairs of points define the
dispersion lines in non dimensional form. *)
Print[m]
g = Transpose[m]
Show[gg1 = ListPlot[g[[1]], PlotJoined → True], gg2 =
ListPlot[g[[2]], PlotJoined → True],
gg3 = ListPlot[g[[3]], PlotJoined → True], gg4 =
ListPlot[g[[4]], PlotJoined → True],
gg5 = ListPlot[g[[5]], PlotJoined→ True], q = Plot[{-2 + x,
2 + x}, {x, -4, 4},
PlotStyle → {Dashing[{.03,. 03}]}], PlotRange →
Automatic]
==================================

2. b0[0] = 1
b0[m_] := (r - Frac e0) d[m - 1] - (1 + v0)2 d[m - 2]
bn[0] = 1
bn[m_] := (r - Frac en) d[m - 1] - (1 + vn)2 d[m - 2]
Dd = (r - Frac e0)(r - Frac en) d[n - 1] - ((r - Frac e0)
(1 + vn)2 + (r - Frac en)(1 + v0)2) d[n - 2] +(1 + v0)2 (1
+ vn)2 d[n - 3]
dd = ∂rDd
rr = N[Solve[Dd == 0, r]]
rrr = Table[Re[Sort[r /. rr]]]
(* Calculation of tabular data *)
Do[{r = rrr[[j]], s[{j}] = Table[{m, N[ 1

100000

Round[ 100000b0[m] bn[n - m]
dd ]]},

{m, 0, n}], Print[s[{j}]]}, {j, 1, n + 1}]
l1 = ListPlot[s[{1}], PlotJoined → True]
l2 = ListPlot[s[{2}], PlotJoined → True]
l3 = ListPlot[s[{3}], PlotJoined → True]
l4 = ListPlot[s[{4}], PlotJoined → True]

l5 = ListPlot[s[{5}], PlotJoined → True]
(*Drawing grids, and summary data*)
Show[l1, l2, l3, l4, l5, PlotRange → Automatic]
==================================

3. m = 0
(* m represents nz-th plan for which we calculate
permittivity,
we will see that, for example, for five-layered film results are
matching with
nz = 0 and 4 or for nz = 1 i 3, and for center plane nz = 2
is different *)
Do[{r = rrr[[j]], s[{j}] = Table[N[b0[m]*bn[n-m]/dd]],
Print[s[{j}]]}, {j, 1, n + 1}]
ss[n_] := s[n]*(Frac - 4 + rrr[[n]] + I*Sir)/(w2 - (Frac - 4 +
rrr[[n]] + I*Sir)2)
ee = (1 + ss[1] + ss[2] + ss[3] + ss[4] + ss[5])−1

sse[n_] := s[n]*(Frac - 4 + rrr[[n]])/(w2 - (Frac - 4 +
rrr[[n]])2)
ees = (1 + sse[1] + sse[2] + sse[3] + sse[4] + sse[5])−1

Print["PERMITTIVITY"]
(* drawing of single and total data *)
k0 = Plot[ees, {w,30,65}, PlotRange → {{30,65},
Automatic}]
(* permittivity *)

Appendix C: Spatial distribution of probability

In the case of non-perturbed film, subsidiary deter-
minants Bnz−1 and BN−nz are reduced to Chebyshev’s
polynomials Cnz ∧CN−nz . Then the Green functions and
spectral weights have the following form:

Gnz =
i~

2π |X|
CnzCN−nz
CN+1

, gνnz =
Cnz (%ν)CN−nz (%ν)

d
d%CN+1(%)

∣∣∣
%=%(ν)

.

In an ideal film there exist only volume states of excitons.
Finding probability can be found analytically. Using rule
for derivative of the determinant we obtain[

d

d%
CN+1(%)

]
%=%ν

=

N+1∑
i=1

Ci−1(%ν)CN+1−i(%ν) =

N+1∑
i=1

sin iξν sin(N + 2− i)ξν
sin2 ξν

,

and spectral weights become

gνnz =
sin(nz + 1)ξν sin(N − nz + 1)ξν
N+1∑
i=1

sin iξν sin(N + 2− i)ξν
≡

sin2(nz + 1)ξν
N+1∑
i=1

sin2 iξν

(by introducing replacement ξν = πν
N+2 ). The sum of

the denominator can be solved by using known series ex-
pand:

∑m
k=1 sin

2 kx = m
2 −

cos(m+1)x sinmx
2 sin x , it is obtained:∑N+1

i=1 sin2 iξν = N+2
2 . Probabilities of finding excitons

are then:

gνnz =
2

N + 2
sin2

(
(nz + 1)

πν

N + 2

)
.
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