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Theoretical Evaluation of Thermal Properties of TiO2

Anatase and Rutile by using Einstein–Debye Approximation
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In this work, we propose a new approach to accurate calculation of heat capacities at constant volume and
pressure of TiO2 anatase and rutile. The evaluation model is based on the Einstein–Debye approximation which
has been extensively used in solid state physics. The application of proposed approach to anatase and rutile
titanium dioxide computations results is shown to be well numerically satisfactory. This approach is valid in wide
temperature ranges and can be suggested for accurate evaluation of thermal properties of solids. The calculation
results are in well agreement with the literature values reported by other studies.
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1. Introduction

The titanium dioxide TiO2 plays important roles in
fundamental studies, such as solar cells, biosensors, pho-
tocatalysis and thermoelectric devices [1–7]. Titanium
dioxide is found in nature in three forms as anatase,
rutile, and brookite polymorphs. Note that anatase
has more applications despite is less stable than other
states. The accurate evaluation problem of thermody-
namic properties in various temperature ranges is ex-
tremely important for its application area to the con-
version of heat into electric power [1, 2]. In the studies
dedicated to investigate the thermal properties of tita-
nium dioxide, the various methods have been applied for
the whole range of temperature [6–14]. Especially, in
study [1], there are some significant numerical results of
the isothermal bulk modules, heat capacities, entropy,
thermal expansion coefficient and vibrational Helmholtz
free energy for titanium dioxide. Also, the some efficient
solution approaches are also given in Refs. [12, 13]. In
spite of these progress, an alternative new approach is
required for accurate evaluation of thermal properties of
anatase and rutile TiO2.

The Einstein and Debye models separately play an im-
portant role in evaluation of thermal properties of solids.
The Einstein model convoluted with the Debye approxi-
mation is one of the most important ingredients for accu-
rate implementation of the heat capacity of solids [15, 16].
The Einstein–Debye model, where all acoustic waves have
the same phase velocity and all optical branches have the
same frequency, can be used to approximate both acous-
tic and optical parts of the phonon spectrum. With this
in mind, the authors [15, 16] have obtained the general
analytical expression which is dependent both on the Ein-
stein temperature and the on Debye temperature. The

∗e-mail: turalmehmetoglu@yahoo.co.uk

application of proposed method for calculation of heat
capacities of TiO2 in wide range of temperature should
be evaluation of the n-dimensional integer and noninteger
Debye functions rapidly and accurate. A general formula
has been established for the Debye functions with the
integer and noninteger values of n [17]. By using this
method, we can calculate the heat capacities of TiO2 in
wide range of temperature.

In this study, we propose an alternative and basic
method for calculation of heat capacities of anatase and
rutile TiO2 based on the Einstein–Debye model. The ob-
tained results are compared with the literature data and
calculation results provide good agreement for arbitrary
values of temperature. Our results could be used as a the-
oretical support for experimental studies of TiO2 such as
the study of phonon densities [14] and entropy [18].

2. Definition and analytical expressions

Based on a Debye–Einstein model, formulae for eval-
uation of heat capacities CV and CP can be written as,
respectively [15, 16, 19]:

CV (T ) = 3NAkBM (T, θD, θE) , (1)

CP (T ) = CV (T )

(
1 +

A0Tm
T

CV (T )

)
. (2)

Here, θD is the Debye temperature, θE is the Einstein
temperature, kB is the Boltzmann constant, NA is the
Avogadro number, T is the absolute temperature, Tm is
the melting temperature, A0 = 5.1×10−3 J−1 K mol and
the quantity M (T, θD, θE) is determined as

M (T, θD, θE) = LV (T, θD) + (s− 1)A (T, θE) , (3)
where LV (T, θD) is the isochoric heat function and s is
the number of atoms in one crystalline lattice point. The
LV (T, θD) functions for n-dimensional crystal are defined
as [15, 16]:

LV (T, θD) = n

(
T

θD

)n ∫ θD
T

0

tn+1 etdt

(et − 1)2
(4)

and the function A (T, θE) is the Einstein function [15]:

(126)
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A(T, θE) =

(
θE
T

)2
e
θE
T(

e
θE
T − 1

)2 . (5)

The LV (T, θD) isochoric heat function is expressed in
terms of the n-dimensional integer and non-integer De-
bye functions as

LV (T, θD) = (n+ 1)Dn

(
1,
θD
T

)
− θD

T

n

e
θD
T − 1

, (6)

where Dn(1, x) are the n-dimensional Debye functions
and generally defined as

Dn (β, x)=
n

xn

x∫
0

tn

(et − 1)β
dt. (7)

Recently, the general analytical formula for the n-
dimensional Debye function is given by [17]:

Dn(β, x) =

n

xn
lim
N→∞

N∑
i=0

(−1)
i
Fi(−β)

γ(n+ 1, (i+ β)x)

(i+ β)n+1
, (8)

where N is summation limit and Fi(−β) are binomial
coefficients defined as [20]:

Fm(n) =
1

m!

m−1∏
i=0

(n− i). (9)

3. Numerical results and discussion

Based on the Einstein–Debye approximation, we have
calculated the heat capacities of anatase and rutile TiO2

for integer and noninteger values of n. The use of the
present method for evaluation shows, in its simplicity,
a well accuracy. In Tables I–IV our calculation results
obtained from Eqs. (1) and (2) for the integer and non-
integer values of n in the range (0.4–3.0) compared with
the experimental data in Refs. [7–9, 21] and significant
matches have been achieved. It is understood from Ta-
bles I–IV that the results are satisfactory with experi-
ment for various values of n.

Fig. 1. The temperature dependence of CP heat ca-
pacity of TiO2 for θD = 760 K, θE = 670 K.

TABLE I

The comparative results of CV (T ) heat capacities of ru-
tile titanium dioxide TiO2 for θD = 760 K, θE = 673 K,
Tm = 1843 K, N = 200 (in J mol−1 K−1)

n T [K] Eq. (1) Exp. [9]
1.2 30 2.235 1.941
1.2 50.5 4.192 5.822
0.9 60 7.361 8.305
0.8 80.4 11.183 12.778
0.4 100 18.261 18.048
0.4 120 22.540 24.118
0.4 140 27.357 28.829
0.4 160 32.247 33.541
0.5 180 36.903 37.694
0.5 200 41.469 41.847
2 220 41.425 45.201
2 239 45.357 47.996
2 250 47.430 49.673
2 270 50.851 52.388
2 290 53.870 54.065
2 310 56.543 56.301
3 330 57.962 57.659
3 350 60.159 59.096
3 370 62.129 60.694
3 400 64.729 62.371

TABLE II

The comparative results of CP (T ) heat capacities of ru-
tile titanium dioxide TiO2 for θD = 760 K, θE = 673 K,
Tm = 1843 K, N = 200 (in J mol−1 K−1)

n T [K] Eq. (2) Exp. [7, 8]
1.2 32.85 2.098 2.019
1.2 41.55 3.305 3.764
0.9 57.05 7.005 7.483
0.8 69.25 9.482 10.461
0.7 77.96 11.763 12.651
0.6 84.46 13.844 14.35
0.6 91.55 15.116 16.20
0.5 100.5 17.756 18.44
0.3 113.14 20.815 22.05
0.3 123.86 23.132 24.93
0.4 134.66 26.047 27.75
0.4 150.96 30.052 31.82
0.4 161.86 32.693 34.38
0.4 173.15 35.347 36.73
0.5 180.45 37.167 38.33
0.5 192.70 39.917 40.68
0.5 200.68 41.611 42.08
0.5 212.15 43.924 43.99
2 223.65 42.217 45.72
2 235.43 44.653 47.36
2 247.34 46.941 48.89
2 259.30 49.074 50.40
2 265.38 50.098 51.04
2 274.18 51.513 52.02
2 286.57 53.378 53.34
2 298.37 55.028 54.54
2 306.15 56.053 55.28
2 319.26 57.677 56.45
3 332.36 58.234 57.54
3 345.80 59.718 58.20
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TABLE III

The comparative results of CV (T ) heat capacities of
anatase titanium dioxide TiO2 for θD = 740 K, θE =
650 K, Tm = 1843 K, N = 200 (in J mol−1 K−1).

n T [K] Eq. (1) Exp. [21]
1.32 36 2.371 2.260
1.0 50.5 5.604 5.534
0.81 60.4 8.427 8.305
0.6 80 13.444 13.576
0.3 100 18.720 19.406
0.38 120 23.206 24.437
0.4 140 28.082 29.708
0.5 170 35.320 35.937
0.5 190 39.715 40.250
0.8 220 44.929 44.801
1.5 250 48.309 48.795
1.5 280 52.482 52.787
1.5 300 54.626 54.864
1.5 320 56.639 56.062
1.5 340 58.385 58.138
1.5 360 59.907 59.336
1.5 400 62.405 61.891

TABLE IV

The comparative results of CP (T ) heat capacities of
anatase titanium dioxide TiO2 for θD = 740 K, θE =
650 K, Tm = 1843 K, N = 200 (in J mol−1 K−1).

n T [K] Eq. (1) Exp. [9]
1.6 30.21 1.160 1.109
1.16 45.727 4.051 4.018
1.03 53.62 5.754 5.998
0.89 60.153 7.672 7.732
0.5 96.02 17.419 17875
0.37 115.9 22.409 23.350
0.44 141.12 28.676 29.813
0.44 176.80 37.496 37832
0.44 192.17 40.916 40.799
0.4 204.98 43.338 43.067
0.35 220.41 45.721 45.509
0.35 246.16 49.859 49.197
0.3 259.03 50.796 50.881
0.3 271.96 52.444 52.465
0.3 282.30 53.665 53.546
0.3 290.02 54.526 54.361
0.3 300.37 55.615 55.381
0.3 310.00 56.567 55.280

In the case where integer and noninteger n is applied
the results obtained was found to much closer to the ex-
perimental data. As seen from the results the main ad-
vantages of the analytic approach we analyzed here are,
first, that it is valid for an arbitrary temperature range
and, in the sense that, it has no insufficiency.

Figure 1 shows temperature dependence of calculated
heat capacity of TiO2 compared with another reported
literature values. We can see a satisfactory agreement
between the calculated and literature results of anatase
and rutile titanium dioxide. As a matter of fact, our
formula to compute the n-dimensional Debye functions,
occurring in Eq. (6), is faster with respect to other known

proposed approaches. The accuracy of analytical method
is acceptable and can be suggested for evaluation of other
thermal properties of titanium dioxide.
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