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We have investigated the point defect distributions in tantalum under irradiation by means of the Marlowe

code based on the binary collision approximation. The study is carried out by simulating displacement cascades
initiated with primary knock-on atom energies ranging from 5 to 20 keV. The Molière, Born–Mayer and average
modified Lenz–Jensen potentials are used to describe the interactions between tantalum atoms. We have examined
the creation of damage, the spatial defects distribution, and the vacancy clustering in tantalum. The results
show that with an appropriate recombination radius, less than 16% of the created defects constitute permanent
Frenkel pairs. Spatial configuration of defects indicates a separation between the two point defect types, vacancies
and interstitials. The Molière potential favors the production of a greater number of displaced atoms and the
development of voluminous cascades more than the other potentials. The cascade volume distributions deviate
clearly from a Gaussian distribution. They are large and very stretched toward higher volumes for all used
potentials. Only small vacancy clusters are formed in tantalum under irradiation and about 41% of the produced
vacancies are considered as isolated
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1. Introduction

Irradiation of materials by energetic atomic particles
leads to the formation of highly disordered regions as
a result of displacements of lattice atoms. Such dam-
aged regions, where point defects and clusters of these
defects are produced, have significant impact on physical
and mechanical properties of materials including harden-
ing, embrittlement, strength, thermal and electrical con-
ductivities. Therefore, understanding the damage pro-
duction mechanism, the spatial distribution, and cluster-
ing of defects are of great practical interest for design-
ing materials to be used in intense irradiation environ-
ments [1–3].

Tantalum Ta is a refractory transition metal. It has
a large number of interesting properties including high
strength and hardness, good thermal conductivity, good
ductility even at low temperatures, and excellent cor-
rosion resistance, that make it a valuable material for a
wide range of uses. It is particularly used in high temper-
ature applications such as aircraft engines, in electronic
equipments, chemical industry, materials of advanced nu-
clear energy system, and medical and military fields [4–6].

Considerable efforts have been made over the years
to determine the displacement threshold energy value
for tantalum [7, 8] as well as to develop semi-empirical
potential models and enhance our understanding of the
mechanical properties of this material [9–13]. However,
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there have been very few reports on the damage produc-
tion in tantalum [14–16]. The displacement cross-section
for tantalum irradiated with protons and neutrons at en-
ergies up to 1 GeV has been investigated by Broeders and
Konobeyev [14, 15]. In an earlier work [16], we examined
the displacement cascades in Ta initiated by primaries of
10 keV. We mainly focused on the temporal development
of the cascade and effects of temperature and potential
on the length distribution of the replacement collision se-
quences (RCS). We found that RCS were weakly affected
by crystal temperature whereas their dependence on the
potential was noticeable. Extensive studies have been
carried out on damage production and clustering in some
bcc metals such as iron, tungsten, and vanadium [17–20].
To the best of our knowledge, there is no work in the
literature concerning the spatial configuration of dam-
age and the clustering of point defects in tantalum using
the binary collision approximation (BCA) or molecular
dynamics models. Therefore, the main purpose of this
study is to investigate, via atomistic simulations based
on the BCA model, the creation and spatial configuration
of point defects, the volume of the damaged region, and
the vacancy clustering in irradiated tantalum. These cas-
cade features, not covered in the earlier work [16], would
provide further insight into the response of tantalum to
irradiation.

In order to study the point defect distributions in tan-
talum, we have used the BCA model. The computer
simulation based on BCA is widely employed to study
the interactions of energetic particles with matter. It was
successfully applied to backscattering, sputtering, and ra-
diation damage [17, 21–27]. By using BCA calculations,
we can cover a wide range of sufficiently high energies,
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treat large numbers of damage events and therefore im-
prove, drastically, cascade statistics [28]. In this model, a
cascade is approximated as sequences of binary encoun-
ters and the colliding particles are assumed to move along
their scattering asymptotes. The displacement cascade
starts with the generation of a primary knock-on atom
(PKA), which is the target atom displaced by the in-
coming particle. The PKA continues collisions creating
secondary recoil atoms which in turn induce further lat-
tice displacements. In these collision processes, the atoms
are dislodged from their location whenever they acquire
energy higher than the displacement threshold energy.
If the energy of a moving atom is insufficient to create
new displacements it comes to rest as interstitial. At the
end of the cascade, interstitials and vacancies are pro-
duced in equal numbers and the name Frenkel defect is
used to describe a stable vacancy–interstitial pair. Not
only isolated point defects are generated in a displace-
ment cascade but clusters of vacancies and interstitials
can also be constituted. These defects induced by irradi-
ation have a fundamental influence on the physical and
mechanical properties of materials.

We will start from computing the number of the dis-
placed lattice atoms in the cascade since a fraction of
these atoms will constitute permanent defects. Then, we
examine the relative positions of interstitials and vacan-
cies by constructing a distribution function which gives
the number of Frenkel pairs as function of the distance
vacancy–interstitial. With taking an appropriate recom-
bination radius, we keep only the permanent defects and
try to evaluate the volume of the damaged zone by using
the principal components analysis. Finally, we will inves-
tigate the amount of vacancy clustering and the cluster
sizes.

2. The computational model

The calculations reported here have been performed
with version 15 of the BCA computer code Marlowe. De-
tails concerning the program are described in Refs. [29–
34]. Only Marlowe aspects related to our work are pre-
sented herein. Collision cascades are described as suc-
cession of two-body collisions and atoms are supposed to
move along straight-line trajectories between collisions.
The inelastic atomic collisions constitute of a quasielas-
tic part governed by one of several interatomic potentials
available in the Marlowe package and a separate electron
excitation part. The classical elastic scattering integrals
between the two interacting atoms are evaluated using
Gaussian methods. The results are tabulated as func-
tions of the initial kinetic energy of the projectile and
the impact parameter in an encounter. They include en-
ergies, times, and scattering angles of the colliding atoms.
The number of collisions experienced by the projectile be-
fore it comes to rest is controlled by a maximum impact
parameter value given by the user. Inelastic energy loss
is assumed to occur locally by electron excitation [35]
and nonlocally according to the Lindhard–Scarff–Schiott

(LSS) theory [36]. Thermal vibrations are included in
Marlowe by using a model of uncorrelated Gaussian ther-
mal displacements of the lattice atoms. The distribution
variance may be supplied by the user or can be computed
from the Debye model [37]. A lattice atom is added to
the cascade if it receives a kinetic energy exceeding a dis-
placement energy threshold, Eth. To be redisplaced, a
nonlattice target must surmount a binding energy EB. If
the projectile comes to rest at the recoiling particle site, a
replacement event is identified and it is required that the
target atom must overcome a binding energy Er. When
no particle in the cascade remains with energy greater
than some cut-off value Ec, the cascade atoms and lat-
tice sites involved are arranged in the Frenkel pairs.

The crystal tantalum structure is body-centered cubic
(bcc) with a lattice parameter a0 = 3.304 Å [38]. In our
calculations, 5000 primaries were launched isotropically
from lattice sites with kinetic energies ranging from 5 to
20 keV. The binding energy of the atoms to their lattice
sites is taken equal to the cohesive energy in tantalum
Eth = 8.09 eV [39] and the cut-off energy is Ec = Eth.
Binding energies for the redisplacement and replacement
events were EB = 0.0 eV and Er = 0.2 eV, respec-
tively. Collisions with maximum impact parameter of
0.71a0 were evaluated. Thermal displacements of the lat-
tice atoms were described by the Debye model using the
Debye temperature of tantalum TD = 240 K [40]. Calcu-
lations were made for temperatures of 300 K and 1000 K.
The interatomic potentials used to describe the interac-
tions between tantalum atoms are the Molière approxi-
mation to the Thomas–Fermi potential, the Born–Mayer
potential, and the average modified Lenz–Jensen (AMLJ)
potential. The Molière potential [41] is given by

V (r) =

(
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i=1

αi exp(−βir/aM ), (1)

where Z1e andZ2e are the nuclear charges of the pro-
jectile and target atoms, respectively, r is the distance
between the atoms, αi = (0.35, 0.55, 0.10) and βi =
(0.3, 1.2, 6.0). The screening length aM is computed in
the Marlowe code from the Firsov formula [41]:
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where aB is the Bohr radius (0.529 Å). For Ta–Ta inter-
action, Z1 = Z2 = 73 and aM = 0.07062 Å. The Born–
Mayer potential [41] is governed by

V (r) = A exp(−r/aBM), (3)
where A = 52(Z1Z2)

3/4 and aBM is the screening length.
For the Ta–Ta interaction, A = 32433.08 eV and aBM =
0.219 Å. The average modified Lenz–Jensen potential is
written as [42]:

V (r) =

(
Z1Z2e

2

r

)
exp(−a1r + a2r

√
r − a3r2), (4)

where a1 = 12.3114, a2 = 9.82485, and a3 =
2.78447 [43, 44].
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It is known that the BCA model predicts an excess of
the final number of generated point defects since it does
not account for any thermally activated recombination
of nearby vacancies and interstitials created in the colli-
sional stage. To remediate the situation, we used in Mar-
lowe a recombination radius rV [26, 45]. A Frenkel pair
is considered to remain stable if the vacancy-interstitial
separation distance is larger than rV , otherwise, it recom-
bines. We obtained the rV values for different potentials
by matching the number of Frenkel pairs computed by
Marlowe code to their number calculated from the rela-
tion [14]:

NFP (T ) = ηNNRT , (5)
where NFP is the number of the Frenkel pairs cre-
ated by a PKA with energy T in irradiated mate-
rial, η is the defect production efficiency and NNRT =
0.8Td(T )/2Ed is the number of defects predicted by the
Norgett–Robinson–Torrens (NRT) model Ed is the effec-
tive threshold displacement energy. For tantalum, the
average value for η is 0.73 and Ed is equal to 90 eV [14].
The damage energy denoted Td is computed from the re-
lation [14]:

Td (T ) =
T

1 + k
(
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) , (6)
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A1 is the mass number of the PKA, M2 and A2 are
the mass of the target atom and its mass number, me

is the electron mass and e is its charge. The best match-
ing, within the considered range of PKA energies, was
found for rV = 4.50a0, rV = 3.75a0, and rV = 2.50a0
for Molière, Born–Mayer, and AMLJ potentials, respec-
tively.

3. Results and discussion

Computing the total number of atoms displaced by a
given PKA is an unavoidable task in the study of dam-
age production in irradiated material. Figure 1 shows
the mean number of displaced lattice atoms per cas-
cade, 〈N〉, as function of time for PKA energy of 20 keV,
for the Molière, Born–Mayer, and AMLJ potentials, at
300 K and 1000 K crystal temperatures. Since, at the
beginning of the cascade development, the stopped cas-
cade atoms are not yet very numerous, collisions with
the lattice atoms are the most frequent events and 〈N〉
increases with time. This trend persists as long as the
mobile atoms are able to eject lattice atoms from their
equilibrium positions. As the cascade progresses, the

stopped cascade atoms become increasingly potential tar-
gets. The kinetic energy of the moving atoms diminishes
rapidly being dissipated elastically by producing new re-
coils or displacing stopped cascade atoms and inelasti-
cally in exciting the electrons of the medium. At longer
times, the kinetic energy of the recoils is so low that
they cannot deliver the requisite binding energy to the
lattice atoms to induce new displacements. Accordingly,
the number of displaced lattice atoms remains unchanged
over time. It is worth to notice that according to previ-
ous results [16] relating to the temporal evolution of the
number of atoms in motion, this number increases at the
same time as 〈N〉. It attains a maximum when 〈N〉 be-
gins to reach saturation, then decreases to zero at the end
of the cascade since all mobile atoms come to rest. The
potential model affects the number of displaced atoms.
At the end of the cascade, at the temperature 300 K,
〈N〉 for the AMLJ potential is about 34% lower than
that for the Molière potential. It appears also that 〈N〉
is weakly affected by thermal disorder since this number
is reduced by only ≈ 2.5% for all potentials when the
crystal temperature is increased from 300 K to 1000 K.

Fig. 1. The mean number of displaced atoms per cas-
cade as function of time. Cascades are generated by
20 keV tantalum atoms at the temperatures 300 K and
1000 K for Molière, Born-Mayer, and AMLJ potentials.

The final number of the point defects produced in the
cascade depends on the relative positions of vacancies
and interstitials created in the ballistic stage. The dis-
placed atoms which come to rest in close proximity to
vacancies recombine spontaneously. It is known that the
replacement collision sequences (RCS) by carrying atoms
far away from vacancies contribute to the damage pro-
duction. They are favored at low energies and have ten-
dency to be developed along close packed crystallographic
directions. Our calculations show that RCS lengths in
irradiated tantalum are short. Indeed, the replacement
sequences of length three and four constitute about 7%
and 4%, respectively, of the total number of RCS pro-
duced with the Molière potential. Thus, only a small
fraction of displaced atoms are expelled from the cas-
cade core through RCS and the large proportion of them
stay close to vacancies and have the opportunity to re-
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Fig. 2. Mean number of Frenkel pairs created as
a function of the vacancy–interstitial recombination
distance. Cascades are generated by 20 keV self-
bombardment of tantalum at the temperature 300 K
for Molière, Born-Mayer, and AMLJ potentials.

Fig. 3. Spatial configuration of defects produced by a
20 keV tantalum cascade for Molière potential at the
crystal temperature of 300 K. Large and dark spheres
are interstitials. Small and light spheres are vacancies.

combine. A pertinent study of point defects positions can
be done by constructing the distribution function versus
the vacancy–interstitial pair–separation distance, rV I . It
gives the mean number of the Frenkel pairs of separation
exceeding rV I . Results of such study are presented in
Fig. 2 for PKA energy of 20 keV at crystal temperature
300 K. It is clear that small values of the pair–separation
distance are sufficient to remove a great number of de-
fects. This confirms that most of the displaced atoms are
nearby to vacancies. We obtain by considering the appro-
priate recombination radius for each potential that the
ratio of stable Frenkel pairs over the number of displaced
atoms in displacement model with the Molière potential
is only 10.4%, while this ratio is about 15.4% in model
with the AMLJ potential.

The question of spatial distribution of vacancies and
interstitials in a cascade was treated analytically by
Brinkman [46]. He suggested that an energetic particle

passing through a material creates not only a collection
of point defects, but produces a highly damaged region
composed of an outer shell rich in interstitials and a core
of vacancies. It is possible, with Marlowe, to record the
three spatial coordinates of the permanent point defects
positions for illustrating the final spatial configuration of
a cascade. Figure 3 exhibits the configuration of defects
obtained at the end of 20 keV collision cascade in Ta for
the Molière potential at a crystal temperature of 300 K.
As it is expected, the spatial configuration indicates a
separation between the two point defect types. Vacan-
cies are congregated at the central area of the cascade
whereas interstitials are condensed in a halo surrounding
this area. The replacement collision sequences play the
major role in the eviction of interstitials from the center
of the cascade along low-index crystallographic directions
and the formation of such configuration.

To evaluate the extent of the damage induced by irra-
diation of tantalum, we consider that the produced point
defects constitute a cloud of points in three-dimensional
space and we try to compute the dimensions and the vol-
ume of the cascade. To do this, we used the statistical
method of principal components analysis [47]. It makes it
possible to associate with each displacement cascade an
ellipsoid whose directions of principal axes are given by
the eigenvectors u1, u2, and u3 of the centered covariance
matrix,M , constructed from the point positions in space.
The eigenvector u1 is associated to the largest eigenvalue
of M and u3 to the smallest one. The eigenvalues of M
are the variances of the point distribution along the prin-
cipal axes and their square roots, which are the standard
deviations, representing the half lengths of these axes.
The volume of the ellipsoid which represents the core of
the cascade can now be easily computed from the eigen-
values. The use of this procedure for each cascade makes
it possible to construct the volume distributions. The
core density then can be determined from the ratio of
the ellipsoid volume to the number of defect points in the
core. Figure 4 shows the cascade volume distributions ob-
tained with 20 keV PKAs, for the Molière and the AMLJ
potentials, at a crystal temperature of 300 K. The first
thing to be noted is that, regardless the used potential,
the asymmetry is a prominent aspect in volume distri-
butions. Statistical quantities, skewness s, which char-
acterizes the degree of asymmetry of a distribution rela-
tive to its mean, and kurtosis k, which describes height
and sharpness of the peak with respect to the rest of the
data [48], give quantitative information about the shape
of the distribution. With the Molière potential, we found
s = 7.60 and k = 108.96, while with the AMLJ poten-
tial, s = 3.20 and k = 16.84. Values of the coefficient of
variation which is a measure of dispersion are 58% with
respect to the Molière potential and 44% with respect
to AMLJ potential. For the Born–Mayer volume distri-
bution which is not shown in Fig. 4 for readability, we
found s = 3.17, k = 16.31, and 38% for the coefficient
of variation. These high values indicate clearly that the
distributions deviate from a Gaussian one. Their tails
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are very stretched toward the higher volumes. The cas-
cade volumes are spread out over a wide range of values
showing a high dispersion. Hence, we cannot rely on the
mean volume to give a meaningful representation of the
cascade volume. Even if the cascade is initiated with
the same PKA energy and the same interatomic poten-
tial, the final cascade configurations can be very different.
The loss of correlation between initial conditions and the
final cascade configurations was observed in bcc Fe [49].
It was attributed to the thermal displacements [49]. Our
results show also that the spatial extent of the damage
is potential dependent. Indeed, the Molière potential fa-
vors the development of cascades more than the other
used potentials.

Fig. 4. Cascade volume distributions obtained, with
Molière and AMLJ potentials, by a 20 keV tantalum
cascade at a crystal temperature of 300 K.

Fig. 5. Average number of vacancy clusters as a func-
tion of size and PKA energy for Molière and AMLJ
potentials at the crystal temperature 300 K.

Since most of the produced vacancies are concentrated
in the cascade core, some of them can form clusters.
These irradiation induced defects can influence mechan-
ical and physical properties of the material. Molecular
dynamics simulations show that clustering in metals has

a noticeable dependence on the crystal structure. Indeed,
the defect clustering fraction is higher in metals with fcc
structure such as Cu, Ni and Al [50] than in metals with
bcc structure. In the present work, we consider that a
vacancy is a member of a cluster if it has at least one part-
ner at a distance smaller or equal to the second neighbor
distance. Figure 5 depicts the cluster size distribution
for vacancies at different PKA energies for the Molière
and the AMLJ potentials at temperature of 300 K. The
cluster size is defined by the number of vacancies forming
the cluster. It comes out from our current statistics that
there is no major difference in vacancy clustering when
using the two potentials. The amount of clustering and
the clusters size rise with rising the PKA kinetic energy.
Small vacancy clusters are formed in the cascade. The
largest one involves only five point defects in 20 keV PKA
energy. The fraction of vacancies considered as isolated is
about 41% for the Molière potential in this energy. This
fraction was found about 45% in previous BCA simula-
tions in bcc Fe [18], and the maximum cluster size was
also five vacancies. Molecular dynamics calculations in-
dicate that low vacancy clustering is a behavior present
in other irradiated bcc metals such as tungsten [19] and
vanadium [20].

4. Conclusion

We have used the BCA simulation model to accumu-
late statistics over 5000 cascades and investigate the de-
fects production, the defects spatial configuration, as well
as the vacancy clustering in tantalum. Our results show
that most of the displaced atoms come to rest in close
proximity to vacancies. Only a small fraction of the dis-
placed atoms constitute permanent Frenkel pairs. The fi-
nal spatial configuration of permanent defects indicates a
separation between vacancies and interstitials. We found,
also, that the number of displaced atoms and the cas-
cade extent are influenced by the interatomic potential
model. The Molière potential favors the creation of more
displaced atoms and the development of voluminous cas-
cades. The cascade volume distributions show a high dis-
persion. They are large and very stretched toward higher
volumes for all used potentials. Small vacancy clusters
are formed in tantalum under irradiation and about 41%
of the produced vacancies are considered as isolated.
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