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Multifractality in Fock Space of the Ground State
of the Bose–Hubbard Hamiltonian
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We present a first study of the multifractal properties of the ground state of the Bose–Hubbard Hamiltonian in
Fock space. Numerical simulations of system sizes up to L = 10 at unit filling suggest that multifractality is present
for all values of the bosonic interaction strength. Moreover, the analysis of the generalised fractal dimensions for
different densities exposes qualitatively the superfluid to Mott insulator phase transition.
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1. Introduction

The wave function of a quantum system in Hilbert
space can exhibit an unexpected degree of complex-
ity, even for apparently simple Hamiltonians. One ex-
ample of such complexity is multifractality, which en-
dows the quantum states with unusual statistical prop-
erties [1, 2]: due to the fact that a multifractal is a com-
position of multiple fractals with different fractal dimen-
sions, the moments of a multifractal distribution obey an
anomalous scaling law. Multifractal wave functions were
first found at the critical point of the disorder-induced
localisation-delocalisation transition (the Anderson tran-
sition) in single-particle Hamiltonians [3, 4]. The multi-
fractal analysis of the properties of these critical quantum
states has turned out to be an extremely useful tool to
discover the physics behind this quantum phase transi-
tion (see Ref. [5] and references therein).

The significance of multifractality in quantum systems,
however, goes well beyond non-interacting systems. It
was recently shown that multifractality at the Anderson
transition remains in the presence of Coulomb interac-
tions [6, 7]. Multifractality also seems to play a promi-
nent role in many-body systems subject to strong disor-
der [8, 9], in which an insulating (“many-body localised”)
phase can emerge, corresponding to a many-particle wave
function which is localised in Fock space [10–12]. Perhaps
most striking is the observation that the ground state of
certain many-body spin systems exhibits multifractality
in Hilbert space in the absence of any disorder [13, 14].
Moreover, different quantum phases in these spin systems
can be exposed by studying corrections to multifractal-
ity [15].

Wave function multifractality in Hilbert space seems
to be a generic feature of many-body systems. Even in
the absence of disorder the energetic landscape in Hilbert
space is inhomogeneous, which makes ergodicity unlikely.
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Additionally, the connectivity among the “nodes” (i.e.
basis states) in Hilbert space grows with system size,
which renders localisation also improbable. Hence, mul-
tifractal states, which are delocalised but occupy a van-
ishing fraction of the total space in the thermodynamic
limit (i.e. non-ergodic), may be predominant. This in
turn raises the interesting question of whether the fea-
tures of different phases in many-body systems can be
seen through the multifractal properties in Hilbert space.

Here, we present a first study of the features of the
ground state wave function of a system of many inter-
acting bosons in Fock space. We provide evidence for
the existence of multifractality for all values of the inter-
action strength, and show that it is distinctly different
depending on whether the system is in a superfluid or
a Mott insulating phase. We review briefly the multi-
fractal formalism in Sect. 2, and present our results and
conclusions in Sects. 3 and 4.

2. Multifractal formalism
Let us consider a wave function, |Ψ〉, expanded in a

given eigenbasis, {|j〉}, of a finite Hilbert space of dimen-
sion N ,

|Ψ〉 =
N∑

j=1

ψj |j〉 . (1)

The distribution of probabilities |ψj |2 is said to be multi-
fractal if its q-moments, Rq ≡

∑
j |ψj |2q for q ∈ R, obey

the following scaling law‡

Rq ∼ N−τq , for N →∞, (2)
where the exponents τq must depend non-linearly on q,
and are usually written in the form

τq = Dq(q − 1), (3)
and Dq are called the generalised fractal dimensions.

‡In non-interacting models, where the dimension of Hilbert
space relates to the linear size L of the system as a power-law,
e.g. as in the Anderson model defined on a d-dimensional lattice
(N = Ld), the scaling law given in Eq. (2) is usually written in
terms of L, rather than the dimensionality of Hilbert space.
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The exponents τq are related to the so-called multifractal
spectrum f(α) via a Legendre transformation [16],

f(αq) = q αq − τq, (4)

αq ≡
dτq
dq

. (5)

The multifractal spectrum is a continuous and differen-
tiable function of the singularity strength α, and it has
the following meaning: f(α) gives the fractal dimen-
sion of the set of points in the wave function with the
same intensity, characterised by the singularity strength
α = − ln |ψj |2/ lnN . A multifractal wave function is thus
the result of a composition of different fractal layers, each
of which correlates with a given possible value of the in-
tensity |ψj |2. Observationally, a multifractal eigenstate
exhibits an intricate fluctuating pattern which extends
throughout Hilbert space, as shown in Fig. 1.

In quantum systems, multifractality appears most
prominently at the critical point of disorder-induced
localisation-delocalisation transitions [5]. In this context,
scaling law (2) can also be used to discern the localised
and extended characters of a wave function in Hilbert
space: for an ergodic state (i.e. a state with homogeneous
intensities |ψj |2 ∼ N−1 as N →∞) the generalised mul-
tifractal dimensions have the trivial values Dq = 1, for
all q. On the other hand, localisation implies that only a
finite subset of basis states contributes to the wave func-
tion, and hence the moments Rq become independent of
N as N →∞, leading to Dq = 0 for q > 0. Multifractal-
ity is then exposed by non-trivial values of the generalised
multifractal dimensions 0 < Dq < 1. (Note that D0 is 1
for any normalised distribution.)

For the numerical characterisation of multifractality, it
is convenient to define the N -dependent dimensions

D̃q ≡
1

1− q
lnRq
lnN , (6)

which converge to the generalised fractal dimensions with
increase of N ,

Dq = lim
N→∞

D̃q. (7)

The use of D̃q and of other related N -dependent multi-
fractal exponents allows to generalise scaling laws of type
(2) in order to describe the persistence of wave function
multifractality in the vicinity of the Anderson transition.
Such a generalised multifractal analysis has been used to
perform high-precision studies of the critical properties of
the transition in the non-interacting case [17–22]. This
formalism is also potentially applicable in the presence of
interactions, and work along this line is currently being
pursued [23, 24].

3. The ground state of the Bose–Hubbard
Hamiltonian

The Bose–Hubbard Hamiltonian (BHH), which can be
faithfully implemented experimentally, describes inter-
acting bosons restricted to the first energy band of an
optical lattice [26–29]:
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Fig. 1. Plot of multifractal wave functions versus the
index j of the basis elements in Hilbert space, for two
non-interacting models: (top) At the critical point of the
3D Anderson transition for a cubic system of linear size
L = 120. (bottom) Critical eigenstate of an ultrametric
random matrix [25] of size N = 214.

H = −J
∑

〈k, j〉

b†kbj +
U

2

L∑

k=1

nk(nk − 1), (8)

in terms of bosonic creation/annihilation operators b†k,
bk, nk = b†kbk, in a one-dimensional lattice of L sites.
Hopping (characterised by the hopping strength J) is re-
stricted to nearest neighbours, and we consider a repul-
sive on-site interaction, U > 0.

For fixed density ν = N/L, Hilbert space grows expo-
nentially with the system size L (i.e. with the number of
particles N),

N =

(
N + L− 1

N

)
∼

N,L�1

1√
L

[
(ν + 1)ν+1

νν

]L
. (9)

A basis of Hilbert space is given by Fock states of the
on-site density operators, |n〉 ≡ |n1, n2, . . . , nL〉. Hence
the ground state of the system can be expanded as

|Ψ〉 =
∑

n

ψn |n〉 . (10)

In the non-interacting case (U = 0) all bosons occupy the
lowest energy single-particle Bloch state, and in the ther-
modynamic limit (L → ∞, N → ∞) the energy cost to
induce an excitation in the system goes to zero. In con-
tradistinction, when U → ∞ for integer bosonic density
ν the ground state is given by one Fock state, with a fixed
number ν of bosons per site. In this case the simplest ex-
citation consists in moving one boson to a neighbouring
site, which entails as a minimum energy cost the interac-
tion energy U . For integer filling factor, the ground state
of the system undergoes a phase transition in the thermo-
dynamic limit at a finite value of the interaction strength,
(U/J)c, between two phases, a superfluid (SF) phase and
a Mott insulator (MI) phase [30–32], which keep some of
the properties of the two limiting cases discussed†. In

†The transition can also be driven by a change in the bosonic



Multifractality in Fock Space. . . 1685

the one-dimensional system, this interaction-driven tran-
sition at fixed density is of the Kosterlitz–Thouless type
(it lies in the universality class of the two-dimensional
XY spin model). The transition can be characterised
using different figures of merit [26]: the SF phase is gap-
less (vanishing excitation energy), it has non-vanishing
superfluid fraction and an infinite correlation length. On
the other hand, the MI phase is gapped, the superfluid
fraction vanishes and the correlation length is finite. Ad-
ditionally, the on-site density fluctuations are strongly
suppressed in Mott insulator [33, 34].

As discussed above, the ground state in the limit U →
0 involves a superposition of all Fock states, while for
U → ∞ we have |Ψ〉 = |ν, ν, . . . , ν〉. Hence, the SF
to MI transition resembles a delocalisation-localisation
transition in Fock space. This perspective suggests that
the analysis of multifractality in Fock space could provide
some additional insight into this transition. Indeed, as
shown in Fig. 2, the visualisation of the ground state in
Fock basis resembles that of the critical states of Fig. 1.
This indicates that the ground state could be multifractal
in Fock basis for certain values of the interaction.
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Fig. 2. Plot of the ground state wave function of the
1D BHH versus the index j of the basis elements |n〉
in Fock space, for L = N = 10 (N = 92 378) and two
different values of the interaction strength U . Note that
the indexing function j = j(|n〉) of the basis elements,
while affecting the visualization of the wavefunction, is
irrelevant for the multifractal analysis described in the
text.

In the non-interacting case, it is possible to find an an-
alytical expression for the ground state in Fock basis

|ΨU=0〉 =
∑

n

√
N !

LNn1!n2! . . . nL!
|n〉 , (11)

for a fixed number of bosons, i.e. it must be n1 + . . . +
nL = N , and assuming periodic boundary conditions.
From the knowledge of the amplitudes ψn, the analytical
calculation of the moments Rq =

∑
n |ψn|2q and of Dq

is possible. The generalised fractal dimensions for U = 0

density at fixed U/J ; here we will only consider the interaction-
driven case. These two phase transitions do not belong to the
same universality class.

can be obtained as

Dq =
ln fq(zc)− ν ln zc − qν(1− ln ν)

(1− q)[(ν + 1) ln(ν + 1)− ν ln ν] , (12)

where fq(z) =
∑∞
k=0 z

k/(k!)q, and zc is the solution of
f ′q(zc)/fq(zc) = ν/zc. This result was first obtained by
Bogomolny [35], and proves that even for vanishing inter-
action the ground state in Fock basis exhibits non-trivial
multifractality (see black line in the inset of Fig. 3).

0.001 0.01 0.1 1 10 100 1000
U/J

0

0.2

0.4

0.6

0.8

1

D̃q

L = 4
L = 7
L = 10

0 5 10 15q
0

0.5

1

Dq

q = 0.2

q = 1.2

q = 5

U/J = 0

0.1

1

3

10

Fig. 3. System-size dependent fractal dimensions D̃q

versus interaction strength U/J for q = 0.2, 1.2, 5, for
the ground state of the BHH with ν = 1. The horizon-
tal dashed lines mark the value of Dq in the limit U → 0
given by Eq. (12). The vertical dashed line highlights
the position of the SF to MI transition in the thermo-
dynamic limit: (J/U)c = 0.305 ± 0.001 [36]. The inset
shows the extrapolated (N → ∞) generalised fractal
dimensions Dq versus q for several values of U/J .

For non-vanishing interaction, an exact analytical ex-
pression for the ground state cannot be obtained, and the
multifractal analysis must be performed numerically. For
system sizes L . 12, the BHH for ν = 1 can be treated by
exact diagonalisation. In Fig. 3, we show the evolution
of the N -dependent dimensions D̃q (Eq. (6)) as functions
of the interaction strength, for system sizes L = 4, 7, 10.
The behaviour of D̃q suggests that the ground state is
multifractal for any finite value of U . This is confirmed by
the generalised fractal dimensions Dq, obtained from the
extrapolation N →∞, shown in the inset of Fig. 3. The
N -dependent fractal dimensions decrease monotonously
with the interaction strength and they vanish as U →∞
for any q value, in agreement with the localised nature
of the ground state in this limit. Most interestingly, as q
grows, the region where the decay of the fractal dimen-
sions is more pronounced correlates with the location of
the SF to MI transition. In order to assess unambigu-
ously whether the dimensions Dq bear a quantifiable fin-
gerprint of the transition, it is necessary to analyse larger
system sizes, which may be accessible by quantum Monte
Carlo [15].

Nonetheless, from the analysis of the system-size de-
pendent fractal dimensions D̃q, even for small systems,
one can clearly see a qualitative signal of the SF to MI
transition. As demonstrated in Fig. 4, the fractal dimen-



1686 J. Lindinger, A. Rodríguez

sion D̃2 registers a sharp decay towards zero for inte-
ger values of the bosonic density when the interaction is
within the MI region. For non-integer ν, however, D̃2 ap-
proaches asymptotically a non-zero value for increasing
U . From what we can observe, non-trivial multifractality
of the ground state is more prominent when the system
is in the SF phase, as it happens for any value of the in-
teraction whenever the density is non-integer. Note that
a non-vanishing D2 = τ2 < 1 implies that the partici-
pation ratio, 1/R2, of the wave function in Fock space
(i.e. the region where the state is noticeable) diverges
as N → ∞. The wave function is therefore delocalised,
although it occupies a vanishing fraction of Fock space.

Fig. 4. Dimension D̃2 as a function of the interac-
tion strength, U/J , and the bosonic density, ν, for the
ground state of the BHH with L = 6 sites. Red lines
mark the position of the the SF to MI transition in the
thermodynamic limit.

4. Conclusions

We have presented a multifractal analysis in Fock space
of the ground state of the Bose–Hubbard Hamiltonian. It
can be proven analytically that non-trivial multifractal-
ity is already present in the non-interacting case. Nu-
merical simulations of small systems using exact diago-
nalisation suggest that multifractality also exists for non-
vanishing interaction. The degree of multifractality de-
creases monotonously with the interaction strength. For
integer bosonic densities all fractal dimensions decay to
zero as U → ∞, in agreement with the emergence of
Mott insulator limiting state, whereas for non-integer
density, Dq is non-vanishing for increasing interaction
(cf. Ref. [35]). Our results show that the behaviour of the
generalised fractal dimensions exposes qualitatively the
superfluid to Mott insulator phase transition. Whether
the analysis of multifractality in Fock space can also pro-
vide a quantitative characterisation of the transition re-
mains to be investigated.
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