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We present experimental and numerical studies for level statistics in incomplete spectra obtained with mi-
crowave networks simulating quantum chaotic graphs with broken time reversal symmetry. We demonstrate that,
if resonance frequencies are randomly removed from the spectra, the experimental results for the nearest-neighbor
spacing distribution, the spectral rigidity and the average power spectrum are in good agreement with theoretical
predictions for incomplete sequences of levels of systems with broken time reversal symmetry.
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1. Introduction

New achievements in the theory of quantum chaotic
systems [1–3] have accounted for better understanding of
experimental results obtained in real physical systems in
the presence of energy losses (absorption, openness) and
missing energy levels. It is established that the fluctua-
tions in the spectra of quantum chaotic systems coincide
with those of the eigenvalues of random matrices [4] from
the Gaussian orthogonal ensemble (GOE) and the Gaus-
sian unitary ensemble (GUE) for classically chaotic sys-
tems with and without time-reversal symmetry (TRS),
in accordance with the Bohigas-Giannoni-Schmit (BGS)
conjecture [5]. The energy levels of quantum systems
with classically regular dynamics behave as if they were
drawn from a Poissonian random process [6].

A multitude of theoretical and numerical studies de-
voted to the problems of quantum and wave chaos have
been performed to date, yet not all non-generic features
in the spectra of the real physical systems are fully under-
stood. Experimental approaches to an understanding of
these unsolved problems are feasible with microwave cavi-
ties and networks simulating two-dimensional (2D) quan-
tum billiards [7–14] and one-dimensional (1D) quantum
graphs [15–20], respectively. The formal analogies be-
tween the scalar Helmholtz equation, the Telegraph equa-
tion and the two- and one-dimensional Schrödinger equa-
tions, respectively, allow for it. Wave chaos was also stud-
ied using three-dimensional (3D) microwave cavities [21]
but there is no direct analogy between the 3D vectorial
Helmholtz equation and the Schrödinger equation. One
should point out that the introduction of one-dimensional
microwave networks simulating quantum graphs pro-
moted considerably the experimental understanding of
the features of quantum chaotic systems. Other systems
used for this purpose include experiments with Rydberg
atoms strongly driven by microwave fields [22–28].

Scattering systems with broken time-reversal symme-
try were studied thoroughly in experiments with mi-
crowave billiards [29, 30]. The effects of breaking of
time-reversal symmetry (TRS) on the spectral properties
of the eigenvalues of closed quantum systems have also
been investigated in such systems [31–33]. However, it
is difficult if not impossible to obtain complete violation
of TRS in microwave billiards, whereas its achievement
in microwave networks [34–38] is straightforward.

Quantum graphs, introduced by Linus Pauling [39],
provide a very useful tool to model many different sys-
tems, eg., quantum wires [40], optical waveguides [41]
and mesoscopic quantum systems [42, 43]. They con-
sist of vertices connected by 1D bonds (edges). The
BGS conjecture was proven rigourously for graphs with
bonds of incommensurable lengths [44, 45]. This was
also confirmed experimentally with help of microwave
networks [18–20, 34–38].

To perform statistical analysis of the spectral proper-
ties of quantum systems on the basis of random-matrix
theory (RMT) results for the standard Gaussian ensem-
bles complete sequences of eigenvalues belonging to the
same symmetry class are indispensable [5, 46]. Recently,
a new procedure to obtain information on the degree of
chaoticity of a classical system from the spectral proper-
ties of the corresponding quantum system was developed
for incomplete sequences of levels [47, 48]. Incomplete
spectra pose major problems in real physical systems like,
e.g., nuclei and molecules [49–52], which have to be over-
come, so such procedures are indispensable for their anal-
ysis [53, 54]. The effect of missing levels is particularly
large for long-range spectral fluctuations. R.A. Molina
et. al. demonstrated numerically [55] that the power
spectrum [56–60] is a powerful statistical measure to
discriminate between deviations caused by missing levels
and by the mixing of symmetries. Additional informa-
tion on missing levels may be obtained on the basis of
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commonly used statistical measures for short- and long-
range spectral fluctuations [54]. In this paper we present
a numerical analysis of missing level statistics for quan-
tum systems with broken time reversal symmetry. For
this we use as basis incomplete experimental spectra ob-
tained with fully connected six-vertex microwave network
where, additionally, resonance frequencies were removed
randomly.

2. Experimental setup and measurements

To perform one-port measurements of the scattering
matrix S11 we used the experimental setup consisting
of the Agilent E8364B vector network analyzer (VNA)
and a microwave network connected to the VNA via
the HP 85133-616 microwave flexible cable, see Fig. 1.
Quantum graphs with broken TRS are simulated experi-
mentally by networks of coaxial cables with circulators
coupled by junctions at vertices. The coaxial cables
(SMA-RG402) consist of an outer concentric conductor
of inner radius r2 = 0.15 cm, which surrounds dielec-
tric material (Teflon) and an inner conductor of radius
r1 = 0.05 cm. The dielectric constant of Teflon ob-
tained from the measurements is ε ' 2.06. Thus the
cut-off frequency of the TE11 mode below which only
the fundamental TEM can propagate in the cable is
νc ' c

π(r1+r2)
√
ε
' 33 GHz [61, 62]. A circulator is a non-

reciprocal passive device. A signal entering the circulator
through port 1, 2 or 3 exits at port 2, 3, or 1, respectively.
We used the Anritsu PE8403 microwave circulators op-
erating in the frequency range from 7−14 GHz. The
fully connected, six-vertex networks used in the measure-
ments were composed of fifteen bonds (coaxial cables),
four phase shifters, five five-arm joints with circulators,
and one six-arm joint connected to the VNA via flexible
microwave cable. The geometric lengths of the four bonds
was varied with phase shifters (Advanced Technical Ma-
terials PNR P1507D) to obtain 30 different realizations
of networks. It should be stressed that not the geometric
lengths Li but the optical length Lopti = Li

√
ε, of the

microwave cables yield the lengths of the bonds in the
corresponding quantum graph. The total optical length
of the networks Lopt =

∑15
i=1 L

opt
i ' 7.2 m was kept con-

stant.
The scattering matrix S11 was measured in the fre-

quency window 7.6-13.0 GHz. The panels (a) and (b) in
Fig. 2 show examples of measured reflection spectra in
the frequency windows: 7.6-8.6 GHz and 12-13 GHz, re-
spectively. According to the Weyl’s formula given in [15]
N = 2Loptν/c, where c is the speed of light in the vacuum
and ν is microwave frequency, ∼260 resonances should
be observed in the frequency range 7.6-13.0 GHz. On
average, in all 30 network realizations, about 3.5% of
resonances were not detected. There are two main rea-
sons for missing resonances in microwave networks: their
overlapping with other resonances, which increases with
frequency and their small amplitudes. It should be em-
phasized that the experiments with microwave networks

Fig. 1. The six-vertex microwave network containing
four phase shifters and five circulators. One vertex with
the circulator is shown enlarged at the bottom of the
figure.

Fig. 2. The examples of the reflection spectra |S11| in
the frequency windows: 7.6-8.6 GHz (panel (a)) and 12-
13 GHz (panel (b)), respectively.

provide a unique chance for getting almost complete se-
quences of resonance frequencies for the purpose of fur-
ther analysis.

3. Results

Before starting with the analysis of spectral properties,
the resonance frequencies need to be rescaled (unfolded)
to eliminate system specific properties like the total op-
tical length Lopt of the graph. This is done using Weyl’s
formula. The unfolded eigenvalues determined from the
resonance frequencies are given by εi = 2Loptνi/c.
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Before unfolding, we generated three new data se-
ries from the spectra obtained with the 30 realizations
by removing randomly resonance frequencies from them,
yielding sequences with fractions of "missing" resonances
equal to ς = 0.075, 0.135, and 0.190, respectively. The
fraction of detected resonances is characterized by the
parameter φ, where 0 < φ = 1 − ς ≤ 1 [54]. The ran-
dom removal of resonance frequencies was achieved with
a Matlab random number generator. These new data
were rescaled to mean spacing unity [54] of adjacent res-
onance frequencies.

The most common measure of the short-range spectral
correlations is the nearest-neighbor spacing distribution
P (s) describing the distribution of the spacings between
adjacent eigenvalues si = εi+1−εi in terms of their mean
value 〈s〉. For long-range spectral correlations we present
spectral the rigidity ∆3(L) which corresponds to the least
square deviation of the integrated spectral density of the
unfolded εi from the straight line best fitting it in an
interval of length L. We also consider the power spec-
trum, i.e., the square modulus of the Fourier transform
of the deviation δq = εq+1−ε1−q of the spacing between
an eigenvalue and its (q + 1)st nearest neighbor from its
average value q.

Fig. 3. The nearest-neighbor spacing distribution
P (s), the spectral rigidity δ3(L), and the average power
spectrum P (k̃) for three values of φ are shown in the
panels (a), (b), (c), respectively. The modified experi-
mental data are denoted by bars in the panel (a) and by
empty circles in the panels (b) and (c) (red empty cir-
cles). The theoretical results based on RMT for φ = 1,
and φ < 1 are denoted by solid and broken lines, re-
spectively. The agreement between the modified exper-
imental data and the theoretical ones is good.

The results for the discussed above measures are pre-
sented in Fig. 3. The NNSD, the spectral rigidity and
the average power spectrum are displayed in the panels
(a), (b), and (c), respectively. One should point out that
the power spectrum obtained for the incomplete exper-
imental spectra with randomly removed additional res-
onance frequencies are presented in [47]. The results
obtained for the NNSD after removing certain number
of resonances from the experimental spectra to achieve
φ = 0.925, 0.865, 0.810, respectively, are presented by
histograms (red in color) and by empty circles (red in
color) in the other panels. To obtain the experimental
results for φ = 0.925, 0.865, 0.810 about 7200, 6750, and
6300 eigenvalues from all 30 network realizations were
taken into account. The results were obtained by first
calculating the statistical measures for each individual
network and then averaging over them. The solid and
broken lines denote the theoretical results based on ran-
dom matrix theory (RMT) for complete φ = 1, and in-
complete series φ < 1, respectively.

The NNSD taking into account the incompleteness of
a level sequence is given by [54]

P (s) =

∞∑
n=0

(1− φ)
n
p

(
n,
s

φ

)
. (1)

For complete sequences, φ=1, (solid line in the panel (a))
P (s) = p(0, s), which for GUE systems is well approxi-
mated by the Wigner surmise:

P (s) =
32

π2
s2 exp

(
− 4

π
s2
)
. (2)

For φ < 1 (broken line in the panel (a)) the following
expression was used P (s) ' p( sφ ) + (1− φ)p(1, sφ ) + (1−
φ)2p(2, sφ ), where [32]

p

(
n,
s

φ

)
= γ

(
s

φ

)µ
exp

(
−κ
(
s

φ

)2
)
, (3)

with µ = 7, 14 for n = 1, 2, respectively, and γ and κ
determined from the normalization conditions:∫

p

(
n,
s

φ

)
ds = φ,∫

s

φ
p

(
n,
s

φ

)
ds = φ (n+ 1) . (4)

Finally, one gets

P (s) =
32

π2

(
s

φ

)2

exp

(
− 4

π

(
s

φ

))2

+ (1− φ)
π4

3

(
35

64

)8(
s

φ

)7

exp

(
−π
(

35

64

s

φ

)2
)

+ (1− φ)
2
π−8

6

7!

(
211

9 · 11 · 13

)16(
s

φ

)14

× exp

(
−π−1

(
211

9 · 11 · 13

s

φ

)2
)
. (5)

The spectral rigidity δ3(L) in the case of φ < 1 (broken
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line in the panel (b)) is given by [54]

δ3 (L) = (1− φ)
L

15
+ φ2∆3

(
L

φ

)
, (6)

where for φ=1 the spectral rigidity ∆3(L) (solid line in
the panel (b)) is defined by

∆3 (L) =
L

15
− 1

15L4

∫ L

0

(L− x)
3 (

2L2 − 9xL− 3x2
)

×Y2 (x) dx. (7)
For GUE systems the two-point cluster function Y2(x) =
( sinπx

πx )2 [4].
The power spectrum P (k) = |δ̃k|2 is the Fourier trans-

form of δq = εi+q − εi − q from "time" q to k for the
sequence of N levels

δ̃k =
1√
N

N−1∑
q=0

δq exp

(
−2π ikq

N

)
. (8)

It was shown in Refs. [56, 57], that for k̃ = k/N � 1
the average power spectrum exhibits a power law depen-
dence 〈P (k̃)〉 ∝ (k̃)−α. Regular systems are character-
ized by α = 2 whereas chaotic ones by α = 1, regardless
whether time invariance is preserved or not.

In the case of φ ≤ 1 the analytical expression for the
average power spectrum [55] is given by

〈P (k̃)〉 =
φ

4π2

K
(
φk̃
)
− 1

k̃2
+
K
(
φ
(

1− k̃
))
− 1

(1− k̃)2


+

1

4 sin2(πk̃)
− φ2

12
, (9)

where 0 ≤ k̃ = k/N ≤ 1 and K(τ) = τ is the spectral
form factor for the GUE systems. The avarage power
spectrum 〈P (k̃)〉 for φ = 0.925, 0.865, and 0.81, respec-
tively, is shown with broken lines in panel (c) in Fig. 3.
The case of φ = 1 is plotted in the same panel with the
full lines.

The inspection of the results presented in Fig. 3 reveals
that for all measures, namely for the nearest-neighbor
spacing distribution, the spectral rigidity and the power
spectrum, the experimental results are in good agreement
with the theoretical predictions based on RMT.

4. Conclusions
We compared the nearest-neighbor spacing distribu-

tion, the spectral rigidity, and the power spectrum calcu-
lated for incomplete experimental spectra, where addi-
tionally, resonance frequencies were removed randomly,
obtained with six-vertex microwave networks with bro-
ken time reversal symmetry to the respective analytical
formulas. The agreement between the modified exper-
imental data and the analytical formulas for all these
statistical measures are good or very good which clearly
shows the power of incomplete spectra analysis.
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