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Collectivity and Periodic Orbits
in a Chain of Interacting, Kicked Spins
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The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems,
but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new
interest emerged in many-body aspects of quantum chaos. We study a chain of interacting, kicked spins and carry
out a semiclassical analysis that is capable of identifying all kinds of genuine many-body periodic orbits. We show
that the collective many-body periodic orbits can fully dominate the spectra in certain cases.
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1. Introduction

Random matrix theory (RMT) was developed and
used starting in the 50’s to study statistical aspects
of nuclei and other interacting many-body systems, see
Refs. [1–3]. Later on, it was realized that RMT also
works for single-particle systems [4–7], prompting the
celebrated Bohigas–Giannoni–Schmit (BGS) conjecture.
Semiclassical analysis revealed that the classical peri-
odic orbits (POs) are the skeleton of the quantum spec-
trum [1, 2, 8–11] also providing strong support for the
BGS conjecture [12–14]. It was almost forgotten that
many-body systems were the objects of interest in early
quantum chaos. Only recently, new attempts to ad-
dress many-body systems in the present context were
put forward, e.g. many-body localization [17–19] also
observed in recent experiments [20, 21], spreading in
self-bound many-body systems [22, 23], a semiclassical
analysis of correlated many-particle paths in the Bose–
Hubbard chains [24] and a trace formula connecting the
energy levels to the classical many-body orbits [25, 26].
There are also attempts to study field theories semiclas-
sically [27]. As two large parameters exist in many-body
systems, the number of particles N and the Hilbert space
dimension determined by the inverse effective Planck
constant ~−1

eff , different semiclassical limits are meaning-
ful [28].

Many-body systems show collective motion, not
present in single-particle systems. By collectivity we
mean a coherent motion of all or of large groups of par-
ticles which can be identified in the classical phase space
as well as in the quantum dynamics. Typically, a many-
body system exhibits incoherent, i.e. non-collective, mo-
tion of its particles, coherent collective motion and forms
of motion in between. Collectivity has a strong impact
on the level statistics. While incoherent particle motion
leads to RMT statistics as in the famous example of the
nuclear data ensemble [29, 30], collective excitations often
show the Poisson statistics typical for integrable systems,
as e.g. in Ref. [31], see Ref. [3]. Due to the mixed phase
space, the BGS conjecture is not directly applicable to
many-body systems.

To illuminate the full complexity of the motion in
many-body systems and the importance of collectivity
from a semiclassical viewpoint, we consider a chain of
N interacting kicked spins. We focus on the short time
regime but consider arbitrary N , where the collectivity
plays a significant role. Thereby, we provide a better un-
derstanding of spin chain dynamics as this class of sys-
tems is presently in the focus of theoretical [32–35] and
experimental [36–39] research. This presentation is based
on our recent Letter [40].

2. Chain of interacting, kicked spins

Consider N kicked spins with nearest neighbor inter-
action as in Ref. [41], described by the Hamiltonian

Ĥ = ĤI + ĤK

∞∑
T=−∞

δ(t− T ) (1)

with the interaction part ĤI and the kick part ĤK ,

ĤI =

N∑
n=1

4Jŝzn+1ŝ
z
n

(j + 1/2)2
, ĤK =

2

j + 1/2

N∑
n=1

b · ŝn, (2)

where ŝn = (ŝxn, ŝ
y
n, ŝ

z
n) are the operators for spin n

and quantum number j. Periodic boundary conditions,
i.e. ŝzN+1 = ŝz1, make the system translation invariant.
Moreover, J is the coupling constant and b a magnetic
field, assumed without loss of generality to have the form
b = (bx, 0, bz). The kicks act at discrete integer times T .
The one period time–evolution (Floquet) operator reads

Û = ÛI ÛK , ÛI = e− i (j+1/2)ĤI ,

ÛK = e− i (j+1/2)ĤK , (3)
where (j + 1/2)−1 takes on the role of the Planck con-
stant ~eff . We find the corresponding classical system by
replacing ŝm →

√
j(j + 1)nm with a classical spin unit

vector nm precessing on the Bloch sphere. The time evo-
lution can therefore be interpreted as the action of two
subsequent rotation matrices
nm(T + 1) = Rz(4Jχm)Rb(2|b|)nm(T ), (4)

first around the magnetic field axis and then around
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the z axis (the Ising part) with angle 4Jχm, χm =
nzm−1+n

z
m+1. The classical system can be cast in Hamil-

tonian form,

H(q,p) =

N∑
n=1

[
4Jpn+1pn (5)

+

∞∑
T=−∞

δ(t− T )2
(
bzpn + bx

√
1− p2

n cos qn

) ]
,

from which the canonical equations follow. The N -
component vectors p and q are the conjugate momenta
and positions of the N (classical) spins, respectively. The
vectors on the Bloch sphere are given by

nm =
(√

1− p2
m cos qm,

√
1− p2

m sin qm, pm

)
(6)

in terms of the canonical variables. In our study, the
magnetic field b has a sizeable angle with the z axis to
ensure non-trivial chaotic motion.

Fig. 1. Example for the classical motion of N = 7
spins. Periodic orbits for T = 1 kick.

An example for the classical periodic orbits is shown
in Fig. 1 in the case of N = 7 spins and T = 1 kick.

3. Semiclassics and periodic orbits

In Ref. [42] we recently expressed the trace of the prop-
agator Û to power T for an interacting spin system in a
Gutzwiller-type-of form valid in the limit j →∞,

Tr ÛT ∼
∑
γ(T )

Aγ e
i (j+1/2)Sγ . (7)

This is a sum over classical periodic orbits (POs) γ of
duration T if they are well isolated. Here, Sγ is the clas-
sical action and, for an isolated orbit, Aγ the stability
amplitude. For the Hamiltonian (5), most POs are nei-
ther fully stable nor unstable. The connection between
the classical and the quantum system is revealed by the
Fourier transform ρ(S) of Eq. (7) in j. This is method-
ically similar to Refs. [10, 11] and was also used for the
kicked top [43, 44]. We find

ρ(S) =
1

jcut

jcut∑
j=1

e− i (j+1/2)STr ÛT
jcut→∞∼

1

jcut

∑
γ(T )

Aγδ(S − Sγ),

which approximates the action spectrum by peaks of
width approximately π/jcut whose positions are given by
the actions modulo 2π of the POs with length T .

4. Explosion of dimension and duality relation

At this point, we have to overcome a severe problem.
To resolve the peaks in ρ(S) we need to compute Tr ÛT

for sufficiently large jcut. But as its matrix dimension
(2j + 1)N × (2j + 1)N grows exponentially with N , a di-
rect calculation of the spectrum of Û is impossible, e.g.,
even the propagator ÛT for N = 19 spins at j = 1 has
a matrix dimension of 109× 109. Luckily, recently devel-
oped duality relations [28, 45] provide the solution and
make possible, for the first time, a semiclassical analysis
of genuine many-body orbits. The crucial ingredient is
the exact identity

Tr ÛT = Tr ŴN . (8)
The trace over the time-evolution operator Û for T
time steps equals the trace over a nonunitary “particle-
number-evolution” operator Ŵ for N particles. Its di-
mension (2j + 1)T × (2j + 1)T is governed by T instead
of N . A cartoon-type-of visualization of the duality re-
lation is given in Fig. 2.

Fig. 2. Attempt to visualize the duality relation (8).

This duality allows us to calculate ρ(S) for arbitrary
N as long as T is sufficiently short. In Refs. [40, 46] we
generalize this duality approach, developed for j = 1/2 in
Ref. [45], to j � 1. The dual “particle-number-evolution”
operator is a product as well, Ŵ = ŴIŴK . We give its
explicit form using a (2j+1)T dimensional product basis
in spin space,
|σ〉 = |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σT 〉 (9)

with discrete single spin states σt ∈ {−j,−j+1, . . .+ j}.
The interaction part is diagonal with matrix elements

〈σ|ŴI |σ′〉 = δσ,σ′

†∏
t=1

〈σt| exp
2ib · ŝ
j + 1/2

|σt+1〉. (10)

The boundary conditions are periodic, i.e. T + 1 = 1.
The kick part, however, must have a local structure

ŴK = ⊗†t=1ŵK , 〈σ|ŵK |σ′〉 = exp
4iJσσ′

(j + 1/2)2
. (11)

Although ŵK is related to the interaction of ÛI it is not
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diagonal. In the integrable case (bx = 0) the dual oper-
ator acquires particularly simple form which we give for
illustrative purposes,

Ŵnm = exp g(i
4JT

j + 1/2
(n− j − 1)(m− j − 1)

+2iTbz(n− j − 1)g). (12)
The indices m,n run from 1 to 2j + 1 and time turns, in
this case only, to a value set by the system parameters.
For further details, see Refs. [40, 46].

5. Dominance of collectivity
in classical action spectra

We numerically calculate action spectra |ρ(S)| for T =
1 and T = 2 kicks, thereby exploring the short-time be-
havior. We do this by, first, evaluating the traces of the
quantum mechanical time-evolution operator with the
duality relation and, second, by computing the classical
periodic orbits. Hence, we obtain the action spectra in
both ways indicated in Eq. (8). We begin with N = 19
spins and T = 1 kick, both calculations are shown in

Fig. 3. The positions of the periodic orbits are indicated
below the horizontal line at zero. Very good agreement
is seen even for the peak heights. We now turn to T = 2
kicks.

Fig. 3. Action spectrum for N = 19 spins and T = 1
kick.

Fig. 4. Action spectra for N = 3 and N = 4 spins on the left and right hand side, respectively, for T = 2 kicks.

Fig. 5. Action spectra for N = 2, 3, 4, 5, 6, 7, 8, 20, 100 spins for T = 2 kicks.
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As depicted in Fig. 4, the action spectra differ strongly
for N = 3 and N = 4 spins. We are led to argue that, in
the case T = 2, the motion forN = 3 spins is largely inco-
herent motion of the spins, while it is coherent and collec-
tive for N = 4 spins. This can be understood by looking,
always in the case T = 2, at the action spectra for a vary-
ing numbers of spins in Fig. 5. Whenever the number N
of spins is an integer multiple of four, the spectra are
dominated by one very large peak which is much higher
than in the case of the other numbers N of spins. Careful
analysis of the classical phase space yields an explanation
by revealing the occurrence of four-dimensional manifolds
of non-isolated periodic orbits with equal actions. The
effect is illustrated in Fig. 6. Whenever the number N

Fig. 6. Rigid-body-type-of rotation of all groups af
four spins if the number of spins N is an integer mu-
tiple of four.

of spins is an integer multiple of four, the spins organize
themselves into subgroups of four spins each which per-
form a rigid-body-type-of rotation in which these four
spins do not exhibit any kind of relative motion. This
is a strongly coherent, collective motion which, as Fig. 5
shows, outpowers the individual incoherent motion, com-
pletely dominating the action spectra. This phenomenon
cannot be isolated. We expect similar, yet geometrically
different, forms of collective motion for other numbers N
of spins and other numbers T of kicks.

6. Conclusions

We carried out a semiclassical analysis of a (non-
integrable) interacting, many-body quantum system. We
studied a kicked spin chain representing a class of systems
presently being in the focus of experimental and theoret-
ical research. For the first time, we presented a unifying
semiclassical approach to incoherent and to coherent, col-
lective dynamics. Such an interplay between different
kinds of motion is common to very many, if not all, large

systems. The key tool was a recently discovered dual-
ity relation between the evolutions in time and particle
number. It outmaneuvers the drastically increasing com-
plexity of the problem with growing particle number. In
the spin chain a certain type of collective motion strongly
dominates the spectra, whenever the particle number is
an integer multiple of four. An experimental verification
is likely to be feasible in view of the improving ability to
control systems with larger numbers of spins.
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