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Free-Volume Evolution of 1-Propanol Confined
in Variously Filled Regular Mesopores of SBA-15 Matrix
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The free-volume of 1-propanol (1-PrOH) confined in a regular mesoporous SBA-15 matrix was investigated by
desorption experiment at room temperature and over a wide temperature range, from 15 K up to 350 K, for four
different contents of 1-PrOH in the pores. The gradual desorption of 1-PrOH from the mesopores as well as the
free volume temperature dependences have shown that the polar molecules of 1-PrOH located at the inner polar
surface of the SBA-15 matrix are more strongly bound to the matrix surface. The subsequent discussion of the
annihilation and free-volume characteristics follows.
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1. Introduction

1-propanol is a polar substance with a simple struc-
ture and significant use in synthetic, solution organic and
polymer chemistry. It serves as an important prototyp-
ical polar protic organic compound in various types of
condensed matter studies.

The aim of this work is to show the changes in the
annihilation behavior of ortho-positronium (o-Ps) in 1-
PrOH confined in regular mesopores of the SBA-15 ma-
trix compared to the bulk state [1] as a function of dif-
ferent amounts of 1-PrOH in the pores, as well as of the
temperature. As is known, the SBA-15 matrix is a hard
inorganic matrix with a polar inner surface [2]. There-
fore, we expect the effect of the attractive interactions
between the polar groups of 1-propanol and the SBA-
15 matrix, as well as in the free-volume microstructure
of the confined 1-propanol. Similar work was done with
confined media by the partial filling of pores with wa-
ter [3, 4] or n-hexadecane [5, 6] in irregular matrices.
However, these substances crystallize in the bulk state,
unlike the amorphous 1-PrOH, which is studied in this
work.

2. Material and equipment

The matrix 1D-Hexagonal SBA-15 (MK Impex Corp.,
Canada) was used. The main characteristics of the ma-
trix are an average pore size of r = 8.5 nm, a surface
area of SA = 718 m2/g and a total pore volume of
Vtot = 0.93 cm3/g. These quantities were determined
according to the Brunauer–Emmett–Teller (BET) the-
ory.

1-propanol (1-PrOH) from Sigma-Aldrich, Inc, Ger-
many, of 99% purity was used as a medium. The glass
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transition temperature is TDSC
g = 100 K [7]. Other char-

acteristics of the bulk 1-PrOH can be found in work [1].
The content of 1-PrOH in the pores was determined

by weighing (±0.1%) and expressed by the coefficient of
filling k defined as k = malc/(mmatrix + malc), where
malc is the weight of 1-PrOH and mmatrix is the weight
of the pure SBA-15. The fractional filling f of the total
pore volume in % is another useful quantity and can be
expressed by the coefficient k as f = 100k/((1− k)Vtotρ)
where Vtot is the total pore volume per gram of matrix
and ρ is the density of 1-PrOH.

The fast-fast lifetime spectrometer with the resolu-
tion about 350 ps (FWHM) was used for the annihila-
tion experiments. The standard sandwiched geometry of
the sample-source assembly was applied. The resolution
function was determined by Al defect-free sample. The
correction to annihilation in the Kapton foil was taken
into account. LT program [8] was used for the analysis of
spectra. Four lifetime components were fitted during this
analysis. Large lifetimes τ3 or τ4 (in nanosecond range)
originated from the annihilation of ortho-positronium (o-
Ps) in free volumes of different sizes are important for this
study and will be discussed later. From the o-Ps lifetimes,
the free-volume pore sizes were estimated using EELViS
routine [9] for the spherical- or cylindrical-shaped cavity
approximation.

Temperature measurements in the range of 15–
350 K were made by the closed cycle He-refrigerator
JANIS CCS-450 System with temperature stability
about ±0.2 K.

3. Results and discussion

In the first step, desorption of 1-PrOH from SBA-15
matrix at room temperature (298 K) was studied where
we focused on the microscopic free-volume, vh, obtained
from o-Ps lifetime measurements. The results of desorp-
tion experiment are in Figs. 1 and 2. Figure 1 displays
the o-Ps lifetime dependence of small cavities (associated
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with 1-PrOH, τ3) and large holes (predominantly pores
in the SBA matrix, τ4) as a function of the 1-PrOH con-
tent in the SBA-15 expressed by coefficient k. In Fig. 2,
the dependences of the relative intensities I3 and I4 as
a function of filling k show the relative representation of
the large and small free volumes. From both figures we
can deduce the following facts.

Fig. 1. Desorption of 1-propanol from SBA-15. o-Ps
lifetimes τ3 (triangles) and τ4 (circles) as a function of
k.

Fig. 2. Desorption of 1-propanol from SBA-15. Rela-
tive intensities I3 (triangles) and I4 (circles) as a func-
tion of k.

From the over-filled sample (part 1-PrOH was out of
the fully-filled pore), a defined amount of 1-PrOH was
gradually evaporated and then the sample container was
hermetically closed. For k ≥ 0.42 the annihilation is pre-
dominantly in small free volumes which are typical for
liquid 1-PrOH. The annihilation in large holes is negligi-
ble (minimal I4), perhaps, comes from the space between
grains of SBA-15. The mesopores of matrix are full-filled.
At the desorption of 1-PrOH from mesopores for k in
the range from 0.42 up to 0.38, the large pores were ap-

peared and started to grow fast. The compact mass of
1-PrOH in the mesopores probably disrupts quickly by
forming a cylindrical free-volume in the middle of the
pore. Upon further desorption of 1-PrOH for k < 0.35,
the thickness of the layer of 1-PrOH on the internal pore
wall decreased. There is a hint of a stairway structure
of τ4(k) dependence that shows the quasi-stepwise char-
acter which could be associated with the two- and the
monolayer structure of 1-PrOH.

The size of smaller pores is associated with τ3. This
lifetime increases slowly as the filling coefficient de-
creases from k = 0.42 to 0.25. This increase is proba-
bly connected with the creation of small cracks in the
medium. Below k = 0.25, strong tearing of the compact
medium layer probably started with generating larger
free-volumes than in compact 1-PrOH at high fillings.
The gaps are created inside of the medium and perhaps
to a lesser extent between the matrix internal surface and
molecules of the 1-PrOH. The influence of opening micro-
pores between the main cylindrical pores of the matrix
at very low 1-PrOH fillings can be also investigated.

Based on these desorption findings, a series of coeffi-
cients k were selected that could be related to the various
1-PrOH arrangements in the SBA-15 mesopores. These
fillings were used to measure the temperature dependence
of lifetimes.

In Fig. 3, the temperature dependences of the o-Ps life-
time τ3 as well as vh of the confined 1-PrOH for different
k are displayed. The dependence for the bulk 1-PrOH is
also shown for the comparison. Important temperatures
are indicated by arrows.

Fig. 3. Lifetime τ3 temperature dependence for 1-
propanol confined in SBA-15 matrix for the different
filling coefficient k (0.45 stars, 0.34 triangles, 0.25 cir-
cles, 0.15 squares) and bulk sample (diamonds). Full
symbols — heating, open symbols — cooling. Arrow
up — glass transition temperature Tg, arrow down —
onset temperature of plateau Tb2.

The basic values of the measured free-volume charac-
teristics are in Table I, the values for the bulk 1-PrOH
were taken from work [1]. From the results it follows that
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TABLE I

The glass transition temperature Tg, onset temperature
of the plateau Tb2, free-volume at Tg and expansion coef-
ficient αscl of free-volume at Tg for the supercooled liquid
state for a series of the samples with different content of
1-propanol.

Sample Tg Tb2 vh(Tg) αscl

with k [K] [K] [nm3] [×10−4 K−1]
bulk [1] 101 180 0.052 334
0.45 121 219 0.062 268
0.34 121 224 0.055 302
0.25 116 253 0.067 349
0.15 181 - 0.103 151

large fillings (fully-filled pores at k = 0.45 and highly
filled pores at k = 0.34) move the glass transition tem-
perature Tg to higher values. The confined 1-PrOH needs
more energy for the transition from the glassy state to
the supercooled liquid state. Similarly, the onset temper-
ature Tb2 to the plateau region, where the o-Ps lifetime
is a quasi-constant [1], is shifted to a higher temperature
compared to bulk state. In this plateau region confined
1-PrOH for all these pore fillings as well as 1-PrOH in
bulk state have the comparable lifetimes.

On the other hand, at low degrees of fillings, the tem-
perature dependences are dramatically different. For
k = 0.25, there are conditions to create additional free-
volumes between 1-PrOH molecules that expand simi-
larly as free-volumes in bulk or at high filling. The av-
erage value of these additional free volumes can be es-
timated for example at onset Tb2 temperature from the
dependence vh(T ) for fully-filled pores (k = 0.45) and vh
(219 K) for k = 0.25. The difference of these free volumes
is about 0.09 nm3.

For the coefficient k = 0.15, the temperature Tg moved
to higher values where the plateau disappeared. This is
due to the strong H-binding between the thin layer of
polar 1-PrOH and the polar surface of the SBA-15 ma-
trix. It requires a higher temperature for the transition
from the glassy state to the supercooled liquid state. In
this case the expansion coefficient of free-volume in su-
percooled state αscl is significantly less than for higher
filling (see Table I).

4. Conclusion

The study of confined 1-PrOH in the fully-filled meso-
pores of the SBA-15 matrix shows the shift of glass tran-
sition temperature Tg as well as the onset temperature
to plateau region Tb2 to higher temperatures compared
to bulk state.

The desorption of 1-PrOH from SBA-15 matrix at
room temperature, at the decreased content of 1-PrOH
in the matrix from k = 0.42 down to 0.15, generates
gradually microcracks between molecules 1-PrOH. For
k = 0.34, this effect is not noticeable in the vh(T ) depen-
dence but for the lower filling of k = 0.25, the effect is
visible. From the τ4(k) dependence we can conclude that
1-PrOH forms layers at the pore walls. Thickness of the
layer decreases with lower of 1-PrOH content.

At low filling k = 0.15, the temperature dependence
of vh(T ) exhibits the lowest expansion coefficient in su-
percooled state in comparison to the higher content of 1-
PrOH. It is due to the strongly attached molecules to the
polar surface, which are located in thin layer. Tempera-
ture dependences of vh(T ) display the highest Tg values
compared to bulk state and confined systems with higher
content of 1-PrOH.

The onset to the plateau at the temperature Tb2 in the
vh(T ) dependences increases with decrease of the filling
k and the plateau effect disappeared at k = 0.15.
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