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Elastic collision between two H-like atoms using the ab initio static-exchange model (SEM) and a modified
static-exchange model (MSEM) at cold energies are investigated in the center of mass frame considering the system
as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels
are treated exactly. The importance of an exact calculation to find basic physics is highlighted. In addition,
the dependence of scattering length on the van der Waals interaction between the atoms and the dependence of
scattering length on reduced-mass of the system are derived which is completely new information in the field of
science.
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1. Introduction

Very recently Ray [1–5] introduced two new codes to
study cold-atomic collision physics following a SEM and a
MSEM. The SEM includes the non-adiabatic short-range
effect due to electron exchange. The MSEM includes the
effect of long-range van der Waals interaction in addi-
tion to the short-range non-adiabatic effect. Both these
effects, the non-adiabatic short-range due to electron ex-
change and the long-range due to induced dipole polariz-
abilities between the atoms, are highly important at low
and cold energies to determine the strength of effective
interatomic potential and the scattering length.

The two-atomic system is treated as a four-body
Coulomb problem in the center of mass frame and all
the Coulomb interaction terms between the atoms were
calculated exactly to solve the Schrödinger equation, to
obtain the elastic scattering amplitudes. Here the atomic
wave functions are exactly known in all H-like systems.
The SEM code is applied to study the Ps–H, Ps–Ps, Ps–
Mu, Ps–D, Ps–T, Mu–Mu, Mu–H, Mu–D, Mu–T, H–H,
H–D, H–T, D–D, D–T and T–T systems. Here Ps, Mu,
H, D, T symbolize the positronium, muonium, hydro-
gen, deuterium, and tritium, respectively. The MSEM
code is used to study the variation of scattering length
with the variation of the strength of attractive long-range
van der Waals interaction controlling the minimum in-
teratomic distances (R0) as 2a0, 3a0, 4a0, 5a0, 6a0, 7a0,
8a0, 9a0, 10a0, 11a0, 12a0, 15a0, 20a0. Here a0 indicates
the Bohr radius. The systems studied are Ps–H and H–
H. There is no cold energy experimental data available
to compare. So the derived scattering lengths for H–H
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and Ps–H systems are compared with available theoreti-
cal data and found in agreement. The present code is fit
to calculate the low and cold energy data. If the incident
momentum k is greater than 10 a.u., convergence prob-
lem starts in all the systems. The incident energy E [eV]
is related with k [a.u.] by the relation E = 27.21k2/2µ,
where µ is the reduced mass of the system in a.u. Both
the codes are investigated thoroughly and reproduce ex-
actly the same data and establish firmly the earlier find-
ings.

2. Theory and results

An example of a H-like two-atomic system is presented
in Fig. 1. The total Hamiltonian of the system is

H = HDirect = −
~2

2µ
∇2
R′ +HA(r1A) +HB(r2B)

+VDirect(r1A, r2B,R) = HExchange = −
~2

2µ
∇2
Rf

+HA(r2A) +HB(r1B) + VExchange(r1A, r2B,R).

(1)
Here µ is the reduced mass of the system, HA andHB are

Fig. 1. The Mu 1s–Ps(1s) system.
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the Hamiltonians of the two atoms and are defined as:

HA(r1A) = −
~2

2µA
∇2
r1A −

1

|r1A|
,

HB(r2B) = −
~2

2µB
∇2
r2B −

1

|r2B|
, (2)

V (R, r1A, r2B)is the Coulomb interaction: VDirect is for
the direct channel and VExchange is for the exchange or
rearrangement channel

VDirect(R, r1A, r2B) =
ZAZB
R

− ZA
|R− r2B|

− ZB
|R+ r1A|

+
1

|R+ r1A − r2B|
, (3a)

VExchange(R, r1A, r2B) =
ZAZB
R

− ZA
|r1A|

− ZB
|r2B|

+
1

|R+ r1A − r2B|
. (3b)

The four Coulomb interaction terms in Eqs. (3a)
and (3b): the first one is the nucleus-nucleus (NN) in-
teraction, the fourth one is the electron-electron (e1e2)
interaction, the second one is the interaction between
nucleus A and electron 2 (Ae), and the third one is the
interaction between nucleus B and electron 1 (Be).

The system wave functions for the initial and final
channels are defined as:

ψi = e ikiR
′

ϕA1s(r1A)η
B
1s(r2B), (4a)

ψf = (1± P12)e
ikfRfϕA1s(r1A)η

B
1s(r2B). (4b)

Here ϕA1s(r1A) and ηB1s(r2B) are the ground state wave
functions of the atoms and P12 is the exchange (or an-
tisymmetry) operator. The vector joining the center of
masses of the two atoms in the direct channel is

R′ = R+
me

mA +me
r1A −

me

mB +me
r2B, (5a)

whereas the same in the exchange channel is

Rf = R+
me

mA +me
(r2B −R)

− me

mB +me
(r1A +R). (5b)

The notations mA, mB, me represent the masses of the
nucleus A, nucleus B and the mass of electron. The ki
and kf represent the initial and final momenta of the
projectile. In elastic scattering |ki| = |kf |, so only the
direction of the final momentum kf changes. Here R is
the inter-nucleus displacement, r1A and r2B are the po-
sition vectors of the two system electrons with respect
to their corresponding atomic nuclei. The atomic unit
(a.u.) is used throughout.

Projecting different states on the Schrödinger equation
just like the Hartree–Fock variational method one can get
the integro-differential equations that can be solved by
the method of iteration. Here the Lippman–Schwinger
type integral equation in the momentum space formal-
ism [6] rather than using the coordinate space adapted by
Fraser in Ref. [7] is used. The formally exact Lippman–
Schwinger type coupled integral equation for the scatter-
ing amplitude in momentum space is given by [6]:

f±n′1s,n1s(kf ,ki) = B±n′1s,n1s(kf ,ki) (6)

−
∑
n′′

∫
dk′′

2π2

B±n′1s,n′′1s(kf ,k
′′)f±n′′1s,n1s(k

′′,ki)

k2
n′′1s − k′′2 + iε

.

Here B± are the well known Born–Oppenheimer (BO)
scattering amplitude [1, 8–11] in the singlet (+) and
triplet (–) channels, respectively. In a similar fashion, f±
indicate the unknown scattering amplitudes for the sin-
glet and triplet states of the two system electrons. Gener-
ally, the partial wave analysis is used to reduce the three-
dimensional integral equation into the one-dimensional
form. Here the BO amplitude (B±) acts as the input to
get the SEM amplitude following Eq. (6) and is defined
as:

B±n′1s,n1s(kf ,ki) = −
µ

2π

∫
dRdr1Adr2B (7)

×ψ∗f (R, r1A, r2B)V (R, r1A, r2B)ψi(R, r1A, r2B).

The MSEM theory is introduced to include the ef-
fect of van der Waals interaction. The definition of
van der Waals interaction used by Barker and Brans-
den [12] is used as described below

Vvan(R) = 0, if R < R0,

Vvan(R) = −
CW
R6

, if R ≥ R0 when R0 → 0. (8)

The corresponding potential is defined as:

Bvan −
∫

dr1A

∫
dr2B

∫
dR̂

∞∫
R=R0

dRR2

×
(
ψ∗(R, r1A, r2B)

CW
R6

ψ(R, r1A, r2B)

)
. (9)

Here CW is replaced by van der Waals C6 coefficient.
How R0 will be determined is an important question? In
H2 molecule, the internuclear separation is 0.74 Å, i.e.
1.4 a.u. [13].

The effective range theory expresses the s-wave elastic
phase shift (δ0) as a function of scattering-length (a) and
projectile energy (∼ k2) so that

k cot δ0 = −1

a
+

1

2
r0k

2 +O(k4), (10)

when k is the magnitude of the incident momentum and
r0 is the range of the potential.

In Fig. 2, the s-wave elastic phase shifts of both the
total spin aligned states: S = 0 for the singlet (+) and
S = 2 for the triplet (–) for Ps(1s)–Ps(1s) collision using
SEM are presented against the incident momenta k = 0.1
to k = 0.6 a.u. in the energy region below the thresh-
old. These data are compared with the data of Ivanov et
al. [14].

The effective range theory is useful to calculate the
scattering length. In Table I, the scattering length data
for different Ps–atomic systems are presented. A depen-
dence of scattering length on the reduced-mass of the
system is observed. The present findings could be useful
to explain the electron-like scattering behavior of Ps [15]
since the reduced-mass of Ps–atom and electron–atom
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Fig. 2. The s-wave elastic phase shifts in radian for
both singlet (+) and triplet (–) channels in Ps(1s)–
Ps(1s) scattering against the incident momentum
k in a.u., using SEM..

TABLE I

The variation of singlet (+) and triplet (–) scattering length
λ [a.u.] with reduced mass α [a.u.] of the systems: Ps–Ps,
Ps–Mu, Ps–H, Ps–D and Ps–T using SEM.

System Ps–Ps Ps–Mu Ps–H Ps–D Ps–T
α 1.0 1.9809 1.9978 1.9989 1.9993

λ
(+) 9.35 7.40 7.24 7.18 7.14
(–) 3.25 2.50 2.48 2.46 2.45

systems are almost the same and the difference decreases
as the atom becomes heavier.

Figure 3 shows the plot of the effective range theory
used to calculate the scattering lengths for heavier sys-
tems. The variation of triplet scattering length with

Fig. 3. k cot δ−0 vs. k2 curve for different H-like sys-
tems using SEM. The reduced masses are increasing
gradually for the systems from bottom to top solid
curves.

Fig. 4. k cot δ−0 vs. k2 plot for H(1s)–H(1s) elastic
scattering using SEM and MSEM for R0 = 2a0, 3a0,
4a0, 5a0, 6a0, 7a0, 8a0, 9a0, 10a0, 11a0, 12a0, 15a0,
20a0.

reduced-mass for the heavier atomic systems e.g. Mu–
Mu, Mu–H, Mu–D, Mu–T, H–H, H–D, H–T, D–D, D–
T, T–T are presented in Table II. Again we are finding
a systematic dependence of scattering length with the
reduced-mass of the system [5]. It should be noted that
the SEM theory include only the non-adiabatic short-
range effects due to exchange, but no long-range interac-
tion.

TABLE II
The variation of triplet scattering length λ [a.u.] with re-
duced mass α [a.u.] of different H-like systems.

Mu-Mu Mu-H Mu-D Mu-T H-H H-D H-T D-D D-T T-T
α 103.9 186.7 196.7 200.2 918.5 1224.5 1377.6 1836.5 2203.7 2754.5
λ 4.54 4.76 4.88 4.95 5.88 6.25 6.37 6.58 6.68 6.90

The MSEM code is used to study the effect of long-
range attractive van der Waals interaction in (i) Ps 1s–
H 1s and (ii) H 1s–H 1s systems to study the elastic scat-
tering. The most accurate values for the van der Waals
C6 coefficients are used [22] to define the long-range po-
tentials in Eq (8). Different minimum values of inter-
atomic distance R0 are chosen to vary the strength of
interatomic potential. The variation of scattering length
with the variation of values of R0 for Ps–H system are
tabulated and compared with SEM data in Table III.
It is found that at larger interatomic distances e.g. at
R0 = 15a0, the MSEM and SEM data are almost the
same in both the theories. The scattering lengths in both
the systems are gradually decreasing with the increase
of the strength of attractive van der Waals interaction.
The findings are consistent with the basic physics that
the stronger attractive potential causes the shorter scat-
tering length and the stronger repulsive potential causes
the longer scattering length [5].

In Fig. 4, the plot applying effective range theory for
different values of R0 is presented for H–H system. With
the increase of the values of R0, the MSEM data are be-
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ing gradually closer to the SEM data. As the value of
R0 decreases, the strength of attractive van der Waals
interaction gradually increases. The variation of scatter-
ing length with different values of R0 for H–H system are
presented in Table IV. It is to be observed that the scat-
tering length is gradually decreasing and being closer to

the reported accurate values [23–27] as the strength of
van der Waals interaction increases with decreasing R0.
The systematic variation of scattering length towards the
accurate values with decrease of R0 has a great signifi-
cance to understand the basic physics of two-atomic sys-
tems.

TABLE III
The comparison of s-wave elastic scattering length λ and effective ranges (r0) in atomic units for electron spin
singlet (+) and triplet (–) in Ps–H system using SEM and MSEM.

SEM MSEM data for R0 = Other
data 10a0 7a0 5a0 4a0 3a0 2.5a0 results

λ(+) 7.25 7.22 7.19 7.14 7.04 6.17 5.32 4.5a, 5.22b, 5.20c, 5.84d,3.49e, 4.30f

r0(+) 3.79 3.78 3.77 3.75 3.74 3.73 3.48 2.2a, 2.90d, 2.08f

λ(−) 2.49 2.45 2.43 2.36 2.27 2.12 2.02 2.36a, 2.41b, 2.45c, 2.32d, 2.46e, 2.2f

r0(−) 1.42 1.41 1.40 1.38 1.34 1.28 1.19 1.31a
astabilization calculation of Drachman and Houston [16], bclose-coupling calculation of Sinha et al. [17],
cR-matrix calculation of Blackwood et al. [18], dKohn variational calculation of Page [19], evariational calcu-
lation of Adhikari and Mandal [20], f stochastic variational calculation of Ivanov et al. [21].

TABLE IV
The scattering length λ [a.u.] using for different values of R0 for H–H system using SEM and MSEM.

SEM MSEM with R0 = Other
data 20a0 15a0 12a0 11a0 10a0 9a0 8a0 7a0 6a0 5a0 4a0 3a0 2a0 data

5.88, 5.90a 5.80 5.68 5.26 5.11 4.89 4.63 4.38 4.03 3.77 3.68 3.63 3.60 3.58 2.04a 1.91b, 1.22c, 1.34d, 1.3e
aSen et al. [23]; bJamieson et al. [24]; cJamieson and Dalgarno [25]; dWilliams and Julienne [26]; eKoyama and
Baird [27].

All the results in summary form are presented in Fig. 5
and in Fig. 6. Figure 5 presents the interesting behav-
ior of scattering length with the variation of the reduced
masses of the systems. Figure 6 describes the interesting
behavior of scattering lengths with the variation of the
strength of van der Waals interaction for H–H triplet,
Ps–H singlet and Ps–H triplet.

Fig. 5. The behavior of scattering length with reduced
mass of the system using SEM.

Fig. 6. The behavior of scattering length with the
strength of van der Waals interaction using MSEM.

In summary the present article I have presented a brief
description of the two-atomic collision phenomena. The
studies that are done here are just the starting works
in the area. By a little modification, one could mod-
ify the codes to apply them in the alkali atomic sys-
tems. To include almost the entire non-adiabatic effect,
one has to consider the first excited s-states of both the
atoms in coupled-channel methodology. As reduced-mass
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of the system is an important parameter to determine
the strength of interatomic potential, we could answer
a few unanswered questions e.g. electron-like behavior
of Ps [15]. The most accurate values of C6 coefficients
for all the combinations of two-atomic systems would be
useful to answer the reason of the Bose–Einstein conden-
sation (BEC) formation in Rb85–Rb85 system. It is to
be noted that the reduced-mass of Rb85–Rb85 system is
78048.5 a.u. In Rb85–Rb87 system it is 78955.8 a.u. and
in Rb87–Rb87 system it is 79884.5 a.u. Both are much
higher than the Rb85–Rb85 system.
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