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In the present research paper, we investigated spin polarized electronic, magnetic, thermodynamic, and trans-
port properties of thallium gadolinium dichalcogenides TlGdX2 (X = S, Se, Te) using density functional theory.
Electronic structure reveals that all the three compounds are wide band gap semiconductors which are beneficial
for good thermoelectric performance. Calculated magnetic moment of TlGdX2 is found to be in good agreement
with available experimental values and mainly dominant by Gd3+ ions. Semiclassical Boltzmann transport theory
has been used to calculate the Seebeck coefficient and electrical conductivity for the proposed dichalcogenides.
Calculated values of the Seebeck coefficient and electrical conductivity are found to be consistent with available
experimental values in literature. Thermodynamic properties of TlGdX2 have also been estimated for the first
time and explained on the basic facts.
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1. Introduction

Magnetic semiconductors are the compounds that ex-
hibit both the semiconducting as well as magnetic charac-
ter. These type of materials offer novel functionalities to
spintronics and magneto-electronic devices, viz. they can
act as spin-filter materials. These materials are used in
magnetic tunnel junctions in which magnetic electrodes
are separated by an insulating barrier and ballistic trans-
port achieved through the tunneling of the electrons via
the barrier [1, 2]. Thallium gadolinium dichalcogenides
TIGdX2 (X = S, Se, Te) may be considered as mag-
netic semiconductors because they consist of magnetic
and semiconducting properties. Along with this, they
can be assumed as good thermoelectric materials due to
their high Seebeck coefficient and thermoelectric figure
of merit [3]. Therefore, magnetic and semiconducting
character make these materials useful to spintronics and
magneto-electronic devices while high Seebeck coefficient
and thermoelectric figure of merit make them useful for
the power generators and the Peltier cooling devices [3].
Furthermore, because wide band gap semiconducting ma-
terials permit devices to operate at much higher voltages,
frequencies, and temperature than conventional semicon-
ducting materials, hence these materials can also be suit-
able as a new alternate of other conventional semicon-
ducting materials. TIGdX2 (X = S, Se, Te) crystallize in
the rhombohedral α-NaFeO2 type structure (with space
group R − 3m, 166) belonging to the class of layered
structure in which layers of magnetic ions are separated
by three layers of nonmagnetic ions [4].
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From literature point of view, TlGdSe2 and TlGdTe2
are first synthesized from their respective elements by
heating method and then temperature dependent ther-
moelectric properties(Viz. the Seebeck coefficient, elec-
trical conductivity and thermoelectric figure of merit) of
these compounds were studied by Sankar et al. [3]. Thal-
lium gadolinium dichalcogenides were also synthesized
and structural, magnetic properties have been studied by
Duczmal et al. [4–6]. Guseinov et al. studied many physi-
cal properties of similar type thallium rare earth dichalco-
genides viz. T1LuSe2, T1YbSe2, T1TmSe2, T1ErSe2,
T1HoSe2, T1DySe2, T1TbSe2, T1SmSe2, T1GaSe2,
TlInSe2 [7]. To the best of our knowledge, a little
study was made on these dichalcogenides. Thus, thal-
lium gadolinium dichalcogenides have been preferred for
first principle study on electronic, magnetic, thermody-
namic and transport properties. First principle study on
these materials will help in further understanding and
controlling the material properties.

2. Computational method

Spin polarized electronic calculations were performed
in terms of band structure and density of state histograms
for spin up and spin down channel within density func-
tional theory (DFT) using an accurate full potential lin-
earized augmented plane-wave plus local orbital method
(FPLAPW +LO) having generalized gradient approxi-
mations (GGA) implemented in WIEN2k package [8–10].
In this method the space is divided into non-overlapping
muffin-tin (MT) spheres separated by an interstitial re-
gion. The basis functions are expanded into spherical
harmonic functions inside the muffin-tin sphere and the
Fourier series in the interstitial region. The k and E
convergences were checked by increase of the number of
k points and energy convergences criteria. The cutoff
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energy which defines the separation of valence and core
states was chosen as –6.0 Ry. In the irreducible part
of the Brillouin zone, 15× 15× 15 k points were used to
calculate the total and partial density of states. The self-
consistent calculations were considered to be converged
until the integrated charge difference between the last two
iterations was less than 0.0001e. The muffin tin sphere
radii (RMT) for each atom of TlGdX2 are taken as 2.5 for
Tl and Gd in each case and 2.21 for Se, 2.48 for Se, and
2.50 for Te. The Fermi energies for TlGdS2, TlGdSe2,
and TlGdTe2 are found to be 0.2864, 2976, and 0.3129 eV,
respectively.

The magnetic properties have been calculated in terms
of magnetic moment and electron spin polarization. Elec-
tron spin polarization (P ) identifies the type of mag-
netic materials viz. zero value of P shows paramag-
netic/antiferromagnetic character of materials even be-
low the magnetic transition temperature. The finite
value of P indicates the ferromagnetic material below the
Curie temperature. The electrons at EF are fully spin po-
larized (P = 100%) when D↑(EF) or D↓(EF) equals to
zero [11–13].

The electron spin polarization at the Fermi energy
(EF) for a material can be calculated by the equation [11–
13]:

P =
D↑(EF)−D↓(EF)

D↑(EF) +D↓(EF)
, (1)

where D↑(EF) and D↓(EF) are the density of states for
majority and minority spin channel at the Fermi level.
Here, ↑ and ↓ denote the spin up and spin down.

Quasi-harmonic Debye model implemented in the
Gibbs package [14, 15] was used to calculate thermody-
namical behavior of TlGdX2 (X = S, Se, Te). In quasi-
harmonic Debye model the non-equilibrium Gibbs func-
tion G∗(V ;P, T ) is in the form of

G ∗ (V ;P, T ) = E(V ) + PV +Avib(θ(V );T ). (2)
Here E(V ) is total energy per unit cell of TlGdX2, PV
denotes the constant hydrostatic pressure, θ(V ) is the
Debye temperature, and Avib is the vibration term which
can be expressed using the Debye model of the phonon
density of states as [14, 15]:

Avib(θ, T ) = nkT

×
(

9θ

8T
+ 3 ln

(
1− e−θ/T

)
−D (θ/T )

)
. (3)

Here, n is the number of atoms per formula unit, D(θ/T )
is the Debye integral. For an isotropic solid, θ can be ex-
pressed as [14, 15]:

θD =
~
k

3

√
6πn
√
V f(σ)

√
Bs
M
. (4)

Here, M is the molecular weight per unit cell and Bs is
the adiabatic bulk modulus, which is nearly equal to the
static compressibility given by

Bs = B(V ) = V
d2E(V )

dV 2
. (5)

f(σ) is given by

f(σ) =
3

√√√√√ 3

2

√[
2(1+σ)
3(1−2σ)

]3
+

√[
1+σ

3(1−σ)

]3 . (6)

The non-equilibrium Gibbs functions as a function of
(V ;P, T ) is minimized with respect to volume V :

∂G ∗ (V ;P, T )

∂V

∣∣∣∣
P,T

= 0. (7)

By solving the above equation with respect to volume
V , one can obtain the thermal equation of state(EOS)
V (P, T ). The specific heat at constant volume and pres-
sure (Cv, Cp) and thermal expansion coefficient α by us-
ing the expressions [14, 15]:

Cv = 3nk

(
4D (θ/T )− 3θ/T

eθ/T − 1

)
, (8)

S = nk
(

4D (θ/T )− 3 ln(eθ/T − 1)
)
, (9)

α =
γCv
BTV

, (10)

Cp = Cv(1 + αγT ). (11)
Here γ represents the Grüneisen parameter, expressed as

γ = − d ln θ(V )

d lnV
. (12)

Using optimized self-consistent field (SCF) calculations
from WIEN2k, one can calculate the thermoelectric
transport properties using the standard semiclassical
Boltzmann theory in conjunction with rigid band approx-
imation. All the calculations of the transport properties
were implemented in the BoltzTrap package [16]. The
electrical conductivity and the Seebeck coefficient tensors
as a function of temperature T and chemical potential µ
(near the Fermi energy) are expressed as

σαβ(T ;µ) =
1

Ω

∫
−σαβ(ε)

∂fµ(T ;µ)

∂ε
dε, (13)

Sαβ(T ;µ) =
1

eTΩσαβ(T ;µ)

×
∫
−σαβ(ε)(ε− µ)

∂fµ(T ;µ)

∂ε
dε. (14)

Here

σαβ(µ) =
e2

N

∑
i,k

τi,kυα(i, k)υβ(i, k)δ(ε− εi,k),

where α and β are tensor indices, e is the electronic
charge, Ω is volume of unit cell, ε(k) is the band en-
ergy, N is the number of k-points sampled, υ(k) is band
velocity, τ(k) is the relaxation time and f is the Fermi
function. In order to obtain accurate transport proper-
ties, the Brillouin zones of the unit cells were represented
by the Monkhorst–Pack special k-point scheme [17] with
15× 15× 15 grid meshes. Since τ cannot be determined
from band structure calculations, thus in our approach
the relaxation time is assumed to be a constant, based
on the consideration that the electrons contributing to
transport are in a narrow energy range due to the delta-
function like the Fermi broadening. The relaxation time
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is nearly the same for the electrons in such a narrow en-
ergy range [18].

3. Results and discussion
3.1. Structural properties

The structural parameters viz. lattice parameters,
bulk modulus and its first order pressure derivative have
been estimated through fitting the total energy data with
the Murnaghan equation of state [19] given by

Etot = E0(V ) +
B0V0

B′0B
′
0 − 1)

×

[
B0

(
1− V0

V

)
+

(
V0
V

)B′
0

− 1

]
, (15)

where E0 and V0 are the energy and volume at equilib-
rium, B0 and B′0 are the equilibrium bulk modulus and
its first order pressure derivative.

TABLE I

Lattice parameters, a0, c0 (Å), bulk modulus, B0 [GPa]
and pressure derivative of bulk modulus, B′0 in equi-
librium condition for TlGdS2, TlGdSe2, TlGdTe2 using
GGA.

TlGdS2 TlGdSe2 TlGdTe2
a0, c0 4.026, 22.29 4.131, 23.01 4.403, 24.20

exp. [3, 4] 4.048, 22.40 4.183, 23.08 4.428, 24.25
B0 52.97 44.70 35.95
B′0 4.11 4.21 4.03

The calculated lattice parameters a0, c0, bulk modulus
B0 and its first order pressure derivative B′0 are shown
in Table I. Calculated values of lattice parameters show
good agreement with experimental values [3, 4]. Bulk
modulus B0 is a material property indicating the degree
of resistance of a material to compression. The larger the
bulk modulus, the greater is the degree of resistance. It
can be observed from Table I that BTlGdS2

> BTlGdSe2 >
BTlGdTe2 which indicates that degree of resistance de-
creases from TlGdS2 → TlGdSe2 → TlGdTe2.

The energy (E0) versus volume (V0) curves (which
indicate the stability of the material) for TlGdS2,
TlGdSe2 and TlGdTe2 are illustrated in Fig. 1a–c, re-
spectively. It is clear from theses figures that all the
three compounds are stable with equilibrium energy val-
ues (E0) –64736.1688, –72860.2376, and –90326.7967 eV
at the equilibrium volume (V0) 731.7552, 821.5613, and
995.5196 a.u.3 for TlGdS2, TlGdSe2, and TlGdTe2, re-
spectively. It is evident that equilibrium energy decreases
while equilibrium volume increases from TlGdS2 →
TlGdSe2 → TlGdTe2. This indicates that the stability
of the molecules increases with increase of the molecular
weight from TlGdS2 → TlGdSe2 → TlGdTe2. Its rea-
son is that, as molecular weight increases, the molecule
needs smaller volume to vibrate in the unit cell to oc-
cupy equilibrium state. As a result, equilibrium energy
decreases and equilibrium unit cell volume increases from
TlGdS2 → TlGdSe2 → TlGdTe2 [20].

Fig. 1. Total energy as a function of unit cell volume
for (a) TlGdS2, (b) TlGdSe2, (c) TlGdTe2 with GGA
approximation.

3.2. Spin polarized electronic and magnetic properties

Electronic behavior of TlGdX2 has been shown in
terms of energy bands and total, partial density of states.
The calculated band structures along the high symme-
try directions Γ , ∆, H, N , Σ , Λ, and P in the irre-
ducible Brillouin zone for spin up and spin down chan-
nel for TlGdS2, TlGdSe2, and TlGdTe2 were shown in
Fig. 2a,b, 2c,d, and 2e,f, respectively. The different colors
in Fig. 2a,b, 2c,d, and 2e,f show that the bands lie in dif-
ferent energy range along different symmetry directions
Γ , ∆, H, N , Σ , Λ and P in the Brillouin zone for spin up
and spin down channels. These figures indicate that most
of the valence bands lie from –13.0 eV to 0.0 eV (where
the Fermi level, EF, is considered at origin). The band
structure histograms of TlGdS2, TlGdSe2, and TlGdTe2
for both the majority and minority channel confirm an
indirect band gap, indicating that TlGdS2, TlGdSe2, and
TlGdTe2 are commonly semiconducting materials at its
own equilibrium lattice constant. The band structure for
spin down channel shows narrower band gap compared
to the spin up channel for TlGdX2 (X = S, Se, Te). This
is due to presence of Gd f spin down channel at around
1.0 eV for TlGdS2, TlGdSe2, and 0.5 eV for TlGdTe2.
Furthermore, the effective indirect band gap is found to
be 1.86, 1.36, and 0.48 eV for TlGdS2, TlGdSe2, and
TlGdTe2, respectively.

Total density of states (TDOS) and partial density of
states (PDOS) plots for TlGdS2, TlGdSe2, and TlGdTe2
have been shown in Figs. 3a–i, 4a–j, and 5a–j, respec-
tively. In case of TlGdS2, Fig. 3a depicts that there are
mainly three peaks in the majority spin channel below
the Fermi level at around –11.0, –4.0, and –2.0 eV. The
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Fig. 2. Spin polarized electron dispersion curves along
high symmetry directions in the Brillouin zone for (a)
TlGdS2 up, (b) TlGdS2 down, (c) TlGdSe2 up, (d)
TlGdSe2 up,(E) TlGdTe2 up, (f) TlGdTe2 up.

Fig. 3. Calculated total and partial density of states
for (a) TlGdS2 total, (b) Tl total and Gd total, (c) Se
total, (d) Tl s and Tl p orbital,(E) Tl d orbital, (f) Gd s
and Gd p orbital, (g) Gd d orbital, (h) Gd f orbital, (i)
S s and S p orbital.

Fig. 4. Calculated total and partial density of states
for (a) TlGdSe2 total, (b) Tl total and Gd total, (c) Se
total, (d) Tl s and Tl p orbital,(E) Tl d orbital, (f) Gd s
and Gd p orbital, (g) Gd d orbital, (h) Gd f orbital, (i)
Se s and Se p orbital, (j) Se d orbital.

Fig. 5. Calculated total and partial density of states
for (a) TlGdTe2 total, (b) Tl total and Gd total, (c) Te
total, (d) Tl s and Tl p orbital,(E) Tl d orbital, (f) Gd s
and Gd p orbital, (g) Gd d orbital, (h) Gd f orbital, (i)
Te s and Te p orbital, (j) Te d orbital.

peak at around –11.0 eV is due to mainly Tl d states
(Fig. 3e). The sharp peak at around –4.0 eV is due to
mainly Gd f states (Fig. 3h) with small contribution of
Tl s (Fig. 3d) states of majority channel. The states at
around –2.0 eV are due to hybridization of Tl s, Gd p,
and S p states (Fig. 3d,f,i) of majority channels. For
spin down, two peaks were observed in the minority spin
channel below the Fermi level at around –11.0 eV and
–2.0 eV. The DOS at around –11.0 eV is due to Tl d
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states (Fig. 3e), whereas DOS at around –2.0 eV is due
to hybridization of Tl s, Gd p and S p states (Fig. 3d,f,i).
It is evident from Fig. 3a that minority spin channel of
Gd f states are at around 1.0 eV which are responsible for
the magnetic moment and for reducing the band gap in
spin down channel as band gap is narrower for spin down
compared to spin up channel. Almost, similar features of
TDOS and PDOS for TlGdSe2 and TlGdTe2 have been
obtained which are depicted in Fig. 4a–j and Fig. 5a–j
and can be discussed in similar fashion.

TABLE II

Calculated spin magnetic moments [µB] of TlGdS2,
TlGdSe2, and TlGdTe2.

TlGdS2 TlGdSe2 TlGdTe2
interstitial region 0.1053 0.1109 0.1222

Tl –0.0007 –0.0012 –0.0015
Gd 7.1096 7.0611 6.9012

S, Se, Te –0.0061 –0.0081 –0.0108
total 7.0081 7.0083 7.0111

exp. [4] 7.85 7.75 –

The calculated and experimental values of total mag-
netic moments of TlGdS2, TlGdSe2, and TlGdTe2 along
with the magnetic moment in the interstitial region and
at each atom have been shown in Table II. The val-
ues of calculated total magnetic moment of the TlGdS2,
TlGdSe2, and TlGdTe2 compounds are found to be 7.21,
7.17, and 7.01 µB which are in close agreement with the
available experimental values 7.85 µB and 7.75 µB [4] for
TlGdS2, TlGdSe2. From Table II, it can also be seen
that total magnetic moment of TlGdS2, TlGdSe2, and
TlGdTe2 is mainly dominant by contribution of individ-
ual moments of Gd3+ ions.

The value of electron spin polarization at the Fermi
energy (EF) for a material is calculated by Eq. (1). In
our case of TlGdS2, TlGdSe2, and TlGdTe2 large view
of TDOS depicts that value of D↑(EF) is very small
(≈ 0.001 states/(eV cell)), while D↓(EF) vanishes at the
Fermi level which gives P = 1 (i.e. P = 100%), imply-
ing all the three compounds are ferromagnetic and nearly
fully spin polarized.

3.3. Thermodynamic and transport properties

Quasiharmonic Debye model has been used success-
fully to calculate the temperature dependent thermody-
namic properties of TIGdX2 (X = S, Se, Te). The effect
of temperature has been studied in a wide temperature
range 0–600 K for TIGdS2, 0–500 K for TIGdSe2, and
0–180 K for TIGdTe2.

Temperature variations of volume (V ), bulk modulus
(B), the Debye temperature (θD), the Grüneisen param-
eter (γ), specific heat (Cv) and thermal expansion coeffi-
cient, α for TIGdX2 (X = S, Se, Te) are shown in Figs. 6–
8. Figures 6a, 7a, and 8a demonstrate the temperature
variation of unit cell volume (V ) for TIGdS2, TIGdSe2,
and TIGdTe2, respectively, and indicate that unit cell

Fig. 6. Temperature induced variation in (a) volume
V , (b) bulk modulus B, (c) specific heat CV , (d) the
Debye temperature θD, (E) the Grüneisen parameter γ,
and (f) thermal expansion coefficient α for TlGdS2.

Fig. 7. As in Fig. 6 but for TlGdSe2.

Fig. 8. As in Fig. 6 but for TlGdTe2.
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volume (V ) increases with temperature. This increase in
volume with temperature is due to the expansion of unit
cell dimensions with temperature. Figures 6b, 7b, and 8b
show that bulk modulus, B decreases with increase of
the temperature. This decrease in bulk modulus with in-
crease of the temperature is caused by change in unit cell
volume with temperature. Value of B also provides an
idea about the degree of resistance of TIGdX2 (X = S,
Se, Te) which decreases with increase of the temperature,
signifying that materials become softer with increase of
the temperature. The temperature dependent behavior
of the calculated heat capacity at constant volume (Cv)
is shown in Figs. 6c, 7c, and 8c for TlGdS2, TlGdSe2,
and TlGdTe2, respectively.

These figures show that CV increases with the tem-
perature up to T ≈ 300 K for TIGdS2, TIGdSe2, and
T ≈ 160 K for TIGdTe2 (follows the Debye T 3 law)
and at temperature T > 300 K for TIGdS2, TIGdSe2,
and T > 160 K for TIGdTe2, Cv approaches to a con-
stant value (the Dulong–Petit limit), indicating that the
temperature has small impact for TIGdS2 and TIGdSe2
while larger impact for TIGdTe2 on the heat capacity
at constant volume. Figures 6d, 7d, and 8d display the
variation of the Debye temperature (θD) with tempera-
ture which point out that θD decreases at slow rate with
increase of temperature for TIGdX2 (X = S, Se, Te).
The slow variation in θD with increase of the tempera-
ture reflects small effect of temperature on θD. In case of
TIGdX2 (X = S, Se, Te), the slow variation of θD with
temperature also reflects the fact that the thermal vibra-
tion frequency of the atoms in TIGdX2 (X = S, Se, Te)
changes slowly with the temperature.

TABLE III

Calculated energy gap Eg [eV], the Fermi energy EF [eV],
the Debye temperature θD [K], the Grüneisen parame-
ter γ, thermal expansion coefficient α [10−5/K], specific
heat CV [J/(mol K)] in equilibrium condition for TlGdS2,
TlGdSe2, and TlGdTe2 using GGA.

TlGdS2 TlGdSe2 TlGdTe2
Eg 1.863 1.362 0.488
EF 0.3510 0.3542 0.3935
θD 465 393 317
γ 2.01 2.12 2.13
α 7.80 9.80 10.20
CV 260 255 250

Further, it can be observed from Table III that θD de-
creases from TlGdS2 → TlGdSe2 → TlGdTe2, reflect-
ing that thermal vibrational frequency decreases from
TlGdS2 → TlGdSe2 → TlGdTe2. Figures 6e, 7e, and 8e
depict the variation of the Grüneisen parameter, γ (which
is measure of anharmonicity of the lattice) [21], with tem-
perature and show that γ increases with temperature, in-
dicating that anharmonicity increases with temperature.
Figures 6f, 7f, and 8f show the variation of thermal ex-
pansion coefficient, α, as a function of temperature. The
thermal expansion coefficient increases rapidly especially

in the temperature range < 0T < 300 K for TIGdS2 and
TIGdSe2 and 0 < T < 180 K for TIGdTe2, indicating
that temperature has high impact on thermal expansion
coefficient, α.

The standard semiclassical Boltzmann theory was used
to calculate the transport properties in terms of the See-
beck coefficients (S) and electrical conductivity (σ) for
TIGdX2 (X = S, Se, Te). The Seebeck coefficient of a
material is the measure of the magnitude of an induced
thermoelectric voltage in response to a temperature dif-
ference across that material. The Seebeck coefficient may
be negative and positive. Negative value of S indicates
that charged carriers are negative (like electrons), and
positive value of S indicates that charged carriers are
positive (like holes). The materials that have zero See-
beck coefficients are known to be superconductors. Even
though metals have large amount of carriers, they have
been known to have smaller Seebeck coefficient values
due to their large electronic contribution to the thermal
conductivity. Semiconductors are known to have larger
Seebeck coefficient values because they can have large
amount of carrier like metals but have low thermal con-
ductivity. The ideal semiconductors have large Seebeck
coefficient, low thermal conductivity, and high electrical
conductivity [22, 23].

Fig. 9. Temperature induced variation in the See-
beck coefficient (S) for (a) TlGdS2, (b) TlGdSe2, (c)
TlGdTe2.

The calculated and experimental values of the See-
beck coefficient S and electrical conductivity σ for the
TIGdX2 (X = S, Se, Te) compounds at about room tem-
perature have been displayed in Table IV. The calculated
values of S were found to be about 90, 218, and 66 µV/K
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Fig. 10. Temperature induced variation in electrical
conductivity (σ) for (a) TlGdS2, (b) TlGdSe2, (c)
TlGdTe2.

TABLE IV

Seebeck coefficient S [µV/K] and electrical conductivity,
σ [Ωcm−1] at 300 K for TlGdS2, TlGdSe2, and TlGdTe2.

TlGdS2 TlGdSe2 TlGdTe2
S 89 218 65

exp. [3] – 230 85
σ 267 3.51 355

exp. [3] – 1.40 530

for TlGdS2, TlGdSe2, and TlGdTe2, respectively, which
are consistent with the available experimental value [3]
230 µ V/K for TlGdSe2 and 85 µ V/K for TlGdTe2. The
calculated values of σ were found to be about 267, 3.51,
and 355 Ωcm−1 for TlGdS2, TlGdSe2, and TlGdTe2, re-
spectively, which are also found to be consistent with the
available experimental values [3] 1.40 Ωcm−1 for TlGdSe2
and 530 Ωcm−1 for TlGdTe2. The temperature variation
of calculated values of S has been depicted in Fig. 9a–
c for TlGdS2, TlGdSe2, and TlGdTe2, respectively, in
temperature range 300–500 K. The experimental values
of S for TlGdS2 are not available in the literature, only
for TlGdSe2 and TlGdTe2 are available. Therefore, tem-
perature variation of experimental values of S has also
been shown along with calculated values for TlGdSe2 and
TlGdTe2 in Fig. 9b and c. These calculated and experi-
mental values are found to be in good agreement.

Temperature variation of calculated values of electri-
cal conductivity (σ) has been shown in Fig. 10a–c for
TlGdS2, TlGdSe2, and TlGdTe2, respectively. The ex-

perimental values of σ are available only for TlGdSe2
and TlGdTe2 [3], which are depicted along with calcu-
lated values in Fig. 10b and c. From Fig. 10b and c,
one can see that calculated values of σ for TlGdSe2 show
good agreement with experimental values. But in case
of TlGdTe2, experimental values show decreasing nature
with temperature whereas our calculated values show in-
creasing nature with temperature. This may be due to
large contribution of electrical conductivity with respect
to temperature and small contribution of thermal con-
ductivity in semiconductors.

4. Conclusions

Full potential linearized potential augmented plane
wave method along with GGA, quasiharmonic Debye
model, and semiclassical Boltzmann model has been
used to study the electronic, thermodynamic, and trans-
port properties of thallium gadolinium dichalcogenides
(TIGdX2, X = S, Se, Te). Our calculated values of struc-
tural parameters are in good agreement with experimen-
tal/theoretical values. These dichalcogenides show the
semiconducting nature with indirect wide band gaps 1.86,
1.36, and 0.48 eV for TlGdS2, TlGdSe2, and TlGdSe2,
respectively. In the total density of states and partial
density of states plots, minority spin channel of Gd f
states are dominant above the Fermi level at around
1.0 eV which are responsible for the magnetic moment
and for reducing the band gap in spin down channel.
The calculated total magnetic moment of the TlGdS2,
TlGdSe2, and TlGdTe2 compounds are found in close
agreement with the available experimental values and
total magnetic moment is mainly dominant by contri-
bution of individual moments of Gd3+ ions. Decreasing
value of θD from TlGdS2 → TlGdSe2 → TlGdTe2, in-
dicate that thermal vibrational frequency decreases from
TlGdS2 → TlGdSe2 → TlGdTe2. The calculated values
of S and σ are found to be in good agreement with the
experimental values.
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