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The structural and elastic properties of NbN2 at high pressures were investigated through the first-principles
calculation. Results indicate that NbN2 is a potential hard material. NbN2 meets mechanical stability criteria and
possesses ductility within the pressure of 100 GPa. The elastic anisotropy under high pressure was achieved by the
elastic anisotropy factors, which reduce with increasing pressure. Using the quasi-harmonic Debye model, we also
investigated the thermodynamic properties of NbN2.
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1. Introduction

The transition metal nitrides (TMNs) become more
and more important in various industrial applications
owing to their outstanding and unique physical prop-
erties, such as chemical and thermal stabilities, high
hardness and strength, high melting point, good thermal
and electronic conductivity, and superconductivity [1–3].
Some noble metal nitrides with orthorhombic marcasite-
type structure (space group of Pnnm, No. 58) such as
PtN2 [4, 5], IrN2 [5, 6], OsN2 [6] and PdN2 [7] with
moderate synthesis conditions and very large bulk mod-
ulus (close to 400 GPa) are expected to be alternative
materials to traditional superhard materials that are of
synthesis expensive [8]. Among these, IrN2 is the least
compressible compound, with the highest bulk modulus
(428 GPa) [6].

For Nb–N system, cubic δ-NbN superconducting phase
possesses high bulk modulus (348 GPa) and Vickers hard-
ness (20 GPa) closing to sapphire [9]. Jiang et al. [10] first
proposed that U2S3 type Nb2N3 may be stable at wide
pressures, and is a potential candidate for hard mate-
rial. Recently, the phase diagram and mechanical prop-
erties of Nb–N system were analyzed by Zhao et al. [11].
They successfully predicted high pressure phases NbN2

with orthorhombic structure (space group of Cmca, No.
64), which is thermodynamically stable up to 100 GPa,
and meet mechanical and dynamical stability at ambient
condition. The elastic constants, elastic modulus and
density of states of NbN2 have already been studied at
ambient pressure. So far, however, the elastic constants,
elastic anisotropy and especially thermodynamic proper-
ties of NbN2 at high pressure have not been investigated,
which is significant for their synthesis and practical appli-
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cations [12]. Based on the above reasons, in this article,
we focus on the detailed investigation on these fundamen-
tal properties of NbN2 at various pressures and tempera-
tures, including elastic constants, elastic anisotropy, and
thermodynamic properties. We expect that our calcu-
lations can have guidable significances to accelerate the
synthesis of NbN2.

2. Computational method

In this paper, all first-principles calculations were per-
formed with the CASTEP code [13]. Non-local ultrasoft
pseudopotential (USPP) introduced by Vanderbilt [14]
or norm-conserving pseudopotential (NCPP) presented
by Hamann et al. [15] were employed for all ion–electron
interactions. The Perdew–Burke–Ernzerhof (PBE) gen-
eralized gradient approximation (GGA) [16] and the lo-
cal density approximation (LDA) proposed by Vosko et
al. [17] were used to describe the exchange and correlation
potentials. Pseudo-atomic calculations are performed for
Nb: 4s24p64d45s1 and N: 2s22p3. The plane-wave basis
set with energy cut-off of 550 eV, and 2×6×6Monkhorst-
Pack grid for Brillouin zone sampling is used throughout.
The structural optimizations were conducted using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimiza-
tion [18]. We found successfully the lowest energy struc-
ture, and the threshold of 5.0× 10−6 eV/atom is used to
determine whether the self-consistent progress has been
converged.

Single crystal elastic constants were calculated via a
strain–stress approach, i.e., by applying a small strain
to the equilibrium lattice of orthorhombic unit cell and
fitting the dependence of the resulting change in stress
on the strain [12]. The elastic constants of c-W3N4 [19],
TaN [20] and RuN2 [21] were successfully obtained by
using this method. This method is made as follows by a
brief description.

In the elastic range, the orthorhombic crystal owns
nine independent elastic coefficients C11, C22, C33, C44,
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C55, C66, C12, C13, C23 because of the symmetry of the
crystal. Elastic modulus values and the Poisson ratio
can be obtained directly within these elastic constants
based on the Voigt–Reuss–Hill method (VRH) [22], in
which the Voigt and Reuss approximation is the theoret-
ical maximum and minimum values. For the orthorhom-
bic structure of NbN2, the formulae as follows [23]:

BV = [C11 + C22 + C33 + 2(C12 + C13 + C23)]/9,

GV = [C11 + C22 + C33 + 3(C44 + C55 + C66

−(C12 + C13 + C23)]/15,

BR = ∆/[C11(C22 + C33 − 2C23) + C22(C33 − 2C13)

−2C33C12 + C12(2C23 − C12) + C13(2C12 − C13)

+C23(C13 − C23],

GR = 15
4

/
{[C11(C22 + C33 + C23) + C22(C33 + C13)

+C33C12 − C12(C23 + C12)− C13(C12 + C13)

−C23(C13 + C23)]/∆

+3(1/C44 + 1/C55 + 1/C66)}, (1)
where

∆ = C13(C12C23 − C13C22 + C23(C12C13 − C23C11)

+C33(C11C22 − C2
12). (2)

The Hill approximation represents the arithmetic mean
values of the Voigt and Reuss approximation. The for-
mulae are as follows [22]:

BH = 1
2
(BV +BR), (3)

GH = 1
2
(GV +GR). (4)

Once B and G are determined, the Young modulus E
and the Poisson ratio v by the following formulae:

E =
9BHGH

3BH +GH
, (5)

v =
3BH − 2GH

2(3BH +GH)
. (6)

To investigate the thermodynamic properties, we here ap-
ply the quasi-harmonic Debye model [24]. In this model,
the non-equilibrium Gibbs function G∗(V ;P, T ) is as the
following form:

G∗(V ;P, T ) = E(V ) + PV +Avib(ΘD(V );T ) (7)
in which E(V ) is the total energy per unit cell for NbN2;
ΘD(V ) is the Debye temperature; vibrational Helmholtz
free energy Avib can be written as [25–27]:

Avib(ΘD;T ) = nkBT

×
(
9

8

ΘD

T
+ 3 ln(1− e−ΘD/T )−D(ΘD/T )

)
, (8)

where D(ΘD/T ) represents the Debye integral, n is the
number of atoms per formula unit and kB is Boltz-
mann constant. Then the non-equilibrium Gibbs func-
tion G∗(V ;P, T ), as a function of (V ;P, T ), can be min-

imized with respect to volume V :(
∂G∗(V ;P, T )

∂V

)
P,T

= 0. (9)

We could obtain the thermal equation of state (EOS) by
solving Eq. (9). Thus the isothermal bulk modulus BT ,
the heat capacity CV and the thermal expansion coeffi-
cient α are given by [28]:

BT (P, T ) = V

(
∂2G∗(V ;P, T )

∂V 2

)
P,T

, (10)

CV = 3nkB

(
4D(ΘD/T )−

3ΘD/T

eΘD/T − 1

)
, (11)

α =
γCV

BTV
, (12)

γ = − d lnΘD(V )

d lnV
, (13)

where γ is the Grüneisen parameter.
3. Results and discussion

3.1. Equilibrium structure and elastic properties
Equilibrium lattice parameters, equilibrium volume

and N–N bond length calculated by USPP GGA-PBE,
GGA-PW91, LDA-CAPZ, NCPP GGA-PBE, together
with the other calculated results of NbN2, RuN2, IrN2

and Nb2N3 for comparison are listed in Table I. By
USPP GGA-PBE the calculated lattice parameters a
(12.333 Å), b (4.202 Å), c (4.120 Å) and equilibrium vol-
ume V (27.208 Å3) for NbN2 are in accordance with the
theoretical data [11], and the differences between them
are within about 1.31%, 0.51%, 0.52% and 2.32% for a,
b, c axes and volume V , respectively. Good agreement
between our computation results and other theoretical
data provides a good support to investigate the elastic,
anisotropy, and thermodynamic properties of NbN2 un-
der high pressures. TABLE I

The calculated equilibrium lattice parameters a, b, c [Å],
equilibrium volume V [Å3], N–N length d [Å] for NbN2 com-
pounds (USPP GGA-PBEa, GGA-PW91b, LDA-CAPZc,
NCPP GGA-PBEd)

a b c V dN−N

NbN2
a 12.333 4.202 4.120 27.208 1.366
b 12.291 4.213 4.209 27.243 1.374
c 12.075 4.152 4.151 26.010 1.367
d 12.565 4.270 4.263 28.585 1.348
e 12.496 4.224 4.222 27.854 1.325

RuN2
f 4.098 4.919 2.696 54.344 1.379g

IrN2
h 4.103 4.925 2.773 28.0 1.375

Nb2N3
i 8.20 8.31 3.02 1.32

e Ref. [11], PAW within GGA-PBE, f Ref. [21], USPP
within GGA-PBE, g Ref. [29], USSP within GGA-PBE,
h Ref. [23], GGA, i Ref. [10], PAW within GGA-PBE.

NbN2 has not been synthesized in the laboratory,
therefore, we list the elastic constants of several other
transition metal nitrides hard materials RuN2, IrN2 and
Nb2N3 for comparison in Table II.
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TABLE II

Elastic coefficients Cij [GPa] bulk modulus B [GPa] shear modulus G [GPa], the Young modulus E [GPa], B/G, the Poisson
ratio v and Vickers hardness Hν of NbN2 from 0 to 100 GPa (USPP GGA-PBEa, GGA-PW91b, LDA-CAPZc; NCPP
GGA-PBEd at 0 GPa).

P C11 C22 C33 C44 C55 C66 C12 C13 C23 B G E B/G ν Hν

NbN2
a 0 635 609 621 308 57 74 117 94 241 307 149 385 2.057 0.291 22.36
b 0 512 602 617 317 51 37 159 137 218 301 123 0.32
c 0 742 710 715 310 119 113 131 119 268 355 198 0.27
d 0 658 590 590 262 44 29 101 92 201 292 118 0.32
e 0 577 597 596 294 54 54 108 112 231 295 134 0.30

10 705 684 701 327 83 96 153 124 270 353 176 454 2.000 0.286 22.75
20 781 756 777 348 107 113 186 153 297 398 201 516 1.980 0.284 22.34
30 856 826 850 367 126 131 215 181 323 441 223 572 1.979 0.284 22.44
40 932 896 919 384 144 146 241 208 347 482 243 623 1.986 0.284 22.34
50 1002 996 995 392 159 160 250 245 352 520 263 675 1.979 0.284 21.40
60 1064 1062 1058 404 172 173 275 272 375 558 279 717 2.001 0.286 21.08
70 1126 1126 1122 415 184 185 300 298 400 596 294 758 2.027 0.288 20.55
80 1188 1189 1184 427 196 197 324 324 423 633 309 797 2.050 0.290 18.95
90 1251 1250 1244 437 208 209 348 349 446 670 323 835 2.071 0.292 19.38

100 1313 1310 1306 447 219 220 372 373 469 706 337 873 2.092 0.294 17.31
RuN2

f 0 642 783 524 113 283 152 160 216 45 306 196 484 1.562 0.236 13.66g

IrN2
h 0 739 883 554 124 297 190 156 277 82 345 217 538 0.240 17.92g

Nb2N3
i 0 426 549 582 152 169 96 237 188 168 303 143 370 0.297

eRef. [11], PAW within GGA-PBE, fRef. [21], USPP within GGA-PBE, gRef. [29], USSP within GGA-PBE, hRef. [23],
GGA, iRef. [10], PAW within GGA-PBE.

The LDA method to some extent overestimates the
elastic constants [30]. It can be seen from the table that
the LDA-calculated elastic coefficients are significantly
larger than the other theoretical value. Correspondingly,
the shear modulus G is also distinct greater than the
other theoretical value. On the other hand, the results of
GGA-PBE and GGA-PW91 are in good agreement with
the values in Ref. [11]. As is known to all, the requirement
of mechanical stability in an orthorhombic crystal leads
to the following restrictions on the elastic constants [21]:

C11 > 0, C22 > 0, C33 > 0, C44 > 0,

C55 > 0, C66 > 0, C11 + C22 − 2C12 > 0,

C11 + C33 − 2C13 > 0, C22 + C33 − 2C23 > 0.

[C11 + C22 + C33 + 2(C12 + C12 + C23)] > 0. (14)
The elastic constants Cij of NbN2 as a function of pres-
sure are plotted in Fig. 1. In the range of less than
100 GPa, all elastic coefficients Cij are in line with the
stability criteria, which indicates that NbN2 is mechan-
ically stable under high pressure. Then all elastic co-
efficients increase linearly with the increase of pressure.
Moreover, C11, C22, C33 reflect the bond strength in the
〈001〉, 〈010〉, 〈100〉 direction. In Fig. 1, the elastic con-
stants C11, C22, C33 are distinctly larger than others and
tend to be almost equal at high pressure.

Furthermore, it is also found that elastic constants of
NbN2 are almost comparable with them of RuN2, IrN2

Fig. 1. Pressure dependence of the elastic coefficients
(Cij) of NbN2.

and Nb2N3 i.e., elastic properties of NbN2 is comparable
to other potential (super)hard materials, which indicate
that NbN2 is a potential incompressible and hard mate-
rial. In general, the shear modulus is a better indicator
of hardness in the design of novel hard/superhard ma-
terials because it ultimately measures the plastic defor-
mation under indentations [31, 32]. Table II lists all the
elastic moduli of NbN2 under different pressures. Obvi-
ously, the values of the bulk modulus B, shear modulus
G and the Young modulus E increase substantially with
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pressure. The calculated elastic moduli, especially shear
moduli (149 GPa) of NbN2 are comparable to those of
RuN2 (196 GPa), IrN2 (217 GPa) and Nb2N3 (143 GPa).
Further to check our conjecture, the hardness calculation
seems to be of interest and necessary. The intrinsic hard-
ness of NbN2 compounds were calculated by the formula
of Gao [33]. The intrinsic hardness of ReN2, WN2 [34],
PtN2 [35] and IrN2, RuN2 [29] were successfully obtained
by applying this method. The calculated hardness val-
ues of orthorhombic NbN2 are 22.36 GPa, which is larger
that of RuN2 (13.66 GPa) and IrN2 (17.92 GPa). The
fact further suggests NbN2 is a candidate for hard mate-
rial.
B/G and the Poisson ratio ν, listed in Table II are

used to judge ductility of materials. According to the
Pugh criterion [36] if B/G > 1.75, the material behaves
in a ductile manner otherwise, the material behaves in a
brittle manner. It can be clearly seen in Table II that the
NbN2 is strongly prone to ductile under high pressure,
which is consistent with the result judged by the Poisson
ratio ν that can be judgment of ductility and brittleness,
for a brittle material ν < 0.26, while for a ductile material
ν > 0.26 [37].

As a fundamental parameter of a solid, the Debye tem-
perature ΘD correlates with many physical properties of
solid materials, such as vibrational internal energy and
elastic constants. The ΘD can be calculated from elastic
constants by the following formula [38]:

ΘD =
h

kB

(
3n

4π

NAρ

M

) 1
3

νm, (15)

which gives explicit information about the lattice vibra-
tions [39]. The calculated shear wave velocity, longitudi-
nal wave velocity, average sound velocity and the Debye
temperature of NbN2 compounds at zero, high pressure
and zero temperature are presented in Table III, present-
ing a trend of increase with pressure. The calculated De-
bye temperature of NbN2 at 0 K and 0 GPa is 715 GPa,
which is larger than that of Nb2N3 (666 K) [10].

TABLE III

The calculated density ρ [g cm−3], the longitudinal, trans-
verse and mean elastic wave velocity (νl, νt and νm [m/s],
and the Debye temperature ΘD [K] of NbN2 under pressure.

P ρ νl νt νm ΘD

0 7.38 8277 4495 5015 715.77
10 7.60 8793 4817 5370 774.18
20 7.81 9231 5071 5653 822.13
30 8.00 9603 5277 5882 862.21
40 8.17 9927 5449 6074 896.85
50 8.33 10221 5617 6261 930.57
60 8.49 10467 5732 6391 955.85
70 8.64 10698 5836 6509 979.06
80 8.78 10911 5932 6618 1000.88
90 8.92 11111 6022 6719 1021.39

100 9.05 11304 6108 6817 1041.23

3.2. Elastic anisotropy

Elastic anisotropy analysis is of great significance
in understanding the mechanisms of materials micro-
cracks, phase transformations, elastic instability and
durability [40]. Hence, a proper description of such
an anisotropic behavior is important in engineering sci-
ence as well as in crystal physics. The universal elastic
anisotropy index AU , the shear anisotropy factors (AG,
A1, A2, A3) and the bulk modulus anisotropy factors AB ,
Ba, Bb and Bc are appropriate measures to quantify the
extent of anisotropy [41].

Firstly, the universal elastic anisotropy index AU ,
which can provide theoretical basis for the degree of
anisotropy, is defined by Ranganathan and Ostoja-
Starzewski from the bulk modulus B and shear modulus
G by Voight and Reuss approaches [41], as

AU = 5
GV

GR
+
BV

BR
− 6. (16)

Secondly, the percent shear and compressibility modulus
factors in polycrystalline materials which can be defined
as [42]:

AG =
GV −GR

GV +GR
, AB =

BV −BR

BV +BR
. (17)

In addition, for orthorhombic crystals, the shear
anisotropic factor for the 〈100〉 shear planes between the
〈011〉 and 〈010〉 directions is [41]:

A1 =
4C44

C11 + C33 − 2C13
, (18)

for the 〈010〉 shear planes between 〈101〉 and 〈001〉 direc-
tions is

A2 =
4C55

C22 + C33 − 2C23
, (19)

for the 〈001〉 shear planes between 〈110〉 and 〈010〉 direc-
tions is

A3 =
4C66

C11 + C22 − 2C12
. (20)

Meanwhile, the directional bulk modulus along different
crystallographic axis can be defined as [42]:

Bi = i(dP/di) (i = a, b, and c). (21)
The anisotropy of the bulk modulus along the a-axis and
c-axis with respect to b-axis can be defined by:

ABa
= Ba/Bb, ABc

= Bc/Bb. (22)
Based on the formulae mentioned above, the calculated
values of AU , AG, and AB are plotted in Fig. 2. For
these three expressions, a value of zero represents elas-
tic isotropy and a value of 1 (100%) is largest possi-
ble anisotropy. At 0 GPa, AU = 2.852, it indicates
that NbN2 is anisotropic materials. In general, AU , AG

and AB decreases with increase of pressure and that is
to say extent of anisotropy of NbN2 will be decreased
with increase of pressure. AB is almost equal to 0 at
high pressure which suggests NbN2 is slightly isotropic
in compressibility. Namely, bulk modulus anisotropy is
evidently smaller than that of shear modulus anisotropy.

The values of A1, A2, A3 and ABa, ABc equal to 1.0
mean that the crystal is isotropic and the degree of the
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Fig. 2. Anisotropy factors (AU , AG, AB) of NbN2 as
functions of pressure.

Fig. 3. Anisotropy factors (A1, A2, A3 and ABa, ABc)
and linear bulk modulus (Ba, Bb, Bc) of NbN2 as func-
tions of pressure (in which the dotted line represents
one).

elastic anisotropy can be reflected by the deviation from
one. Then these parameters are plotted as a function of
pressure in Fig. 3a. When pressure is increased from 0
to 100 GPa, the shear anisotropy factors A1 decrease by
17.2% and A2, A3 increase by 70.3% and 59.5%, respec-
tively. This change is mainly caused by the change of the
elastic constants, especially for A1 the C44 only increases
by 17.2%, but for A2 the C55 and A3 the C66 increase by
284% and 197%, respectively. The anisotropy of the lin-
ear bulk modulus ABb and ABc increases by 13.3% and
3.9%, respectively. Meanwhile, in Fig. 3b, it is interest-
ing to note that the directional bulk modulus Bb along
the b axis is largest when compared to the Ba and Bc at
0 GPa, and Bc is close to Bb along with pressure increase.

To characterize the degree of anisotropy of the Young
modulus, drawing a three-dimensional (3D) graph for
NbN2 compounds is necessary. The three-dimensional
formulas for the Young modulus E in the orthorhombic
system [42] are expressed as follows:

Fig. 4. Direction dependence of the Young modulus E
under different pressures for NbN2, the units are in GPa
for E.

Fig. 5. The projections of the Young modulus E [GPa]
in (110) plane and (001) plane at pressures 0, 50, and
100 GPa, respectively.

E−1 = s11l
4
1 + s22l

4
2 + s33l

4
3 + 2s12l

2
1l

2
2 + 2s23l

2
2l

2
3

+2s13l
2
1l

2
3 + s44l

2
2l

2
3 + s55l

2
1l

2
3 + s66l

2
1l

2
2, (23)

where sij is the usual elastic compliance constants and li
is the direction cosines in any arbitrary direction. The 3D
graph of the Young modulus at three pressures is shown
in Fig. 4. From Fig. 4, the Young modulus anisotropy of
NbN2 is described in detail and the degree of anisotropy
will decrease when pressure increases. At 50, 100 GPa,
the values of the Young modulus in 〈100〉, 〈010〉, and
〈001〉 direction is almost equal and greater than that of
other direction. Because a larger Young modulus often
stands for more covalent feature of a material [43, 44],
the facts indicate that the strength of chemical bonds in
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〈100〉, 〈010〉 and 〈001〉 direction is stronger than other
directions at high pressure, which is consistent with the
results of analysis of elastic constants. Furthermore, the
direction dependence of E in (001) plane and in (110)
plane at 0, 50, and 100 GPa also are shown in Fig. 5.

3.3. Thermodynamic properties

We calculated energy–volume points at 0 K and 0 GPa
by compressive and tensile lattice constants under the
same proportion. Then, thermodynamic quantities of
NbN2 at different temperatures (0, 500, 1000, 1500, 2000,
and 2500 K) and pressures were obtained through the
quasi-harmonic Debye model.

As one of the most important thermodynamic parame-
ters, the special heat capacity CV of a substance not only
provides essential information about its vibrational prop-
erties but also is fundamental to many applications [45].
The heat capacity CV of NbN2 at different temperatures
and pressure are presented in Fig. 6. It shows the heat
capacity CV increases with the increase of temperature,
while decreases as pressure increases. At low tempera-
ture (≈ 500 K), the heat capacity CV is dependent on

both temperature and pressure, which is owing to the
anharmonic approximations of the Debye model [24]. At
high temperatures, CV of all solid will nearly approach to
the Dulong–Petit limit 3nNAkB (n represents the num-
bers of atoms in the molecule). As temperature increases,
the heat capacity CV is close to the Dulong–Petit limit
3nNAkB (≈ 299.32 J mol−1 K−1), where n = 12 for
NbN2 in unit cell.

Fig. 6. The heat capacity CV of NbN2 as functions of
temperature and pressure.

TABLE IV

Values of the Debye temperature ΘD, entropy S and Grüneisen parameter γ of NbN2 at different temperatures.

T [K]
P [GPa]

0 10 20 30 40 50 60 70 80 90 100

0
ΘD 802 851 896 937 975 1011 1045 1077 1108 1137 1165
S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
γ 2.041 1.985 1.936 1.893 1.854 1.819 1.786 1.756 1.728 1.702 1.677

200
ΘD 801 850 895 936 974 1011 1045 1077 1108 1137 1165
S 77.9 69.3 62.3 56.6 51.9 47.8 44.3 41.3 38.6 36.2 34.1
γ 2.043 1.986 1.937 1.894 1.855 1.82 1.787 1.757 1.729 1.703 1.678

500
ΘD 790 840 886 928 967 1004 1039 1071 1103 1132 1161
S 280.2 264.0 250.1 238.2 227.8 218.6 210.2 202.8 195.9 189.7 183.9
γ 2.056 1.997 1.946 1.902 1.862 1.826 1.793 1.762 1.733 1.707 1.682

1500
ΘD 740 795 845 891 933 972 1009 1043 1076 1107 1136
S 612.3 591.0 573.1 557.5 544.0 532.0 521.2 511.3 502.4 494.1 486.4
γ 2.12 2.049 1.991 1.941 1.897 1.858 1.822 1.788 1.758 1.729 1.703

2500
ΘD 681 745 800 849 895 937 975 1012 1046 1079 1110
S 788.7 762.2 741.0 723.1 707.5 694.0 682.0 671.1 661.1 652.1 643.6
γ 2.211 2.114 2.044 1.987 1.937 1.894 1.855 1.819 1.786 1.755 1.727

Thermal expansion coefficient α as functions of pres-
sure (temperature) are shown in Fig. 7. In Fig. 7a, it
is noted that the α increases quickly with temperature
at low pressure and temperatures and the trend of in-
crease will become slow at high temperatures. Specifi-
cally, temperature increases from 0 to 600 K at 20 GPa,
α increases from 0 to 2.14 × 10−5 K−1. But α only in-
creases 0.78 × 10−5 K−1 when temperature rises from
600 K to 2500 K. It is clearly seen that the curves at

high temperature is very close in Fig. 7b. Additionally,
the Debye temperature ΘD, entropy S and Grüneisen
parameter γ of NbN2 along with the change of pressure
and temperature were also calculated, which were listed
in Table IV. It is obvious that ΘD rises with the increase
of pressure and reduces with increase of temperature con-
versely. Meanwhile, pressure has a more evident influence
on ΘD than temperature.
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Fig. 7. The thermal expansion α versus temperature
and pressure.

4. Conclusions

The elastic, anisotropy, and thermodynamic proper-
ties of the NbN2 at high pressure were investigated and
evaluated by the first-principles calculations. The ob-
tained data of the ground state structural properties are
in excellent agreement with reliable theoretical results.
The calculated elastic properties and intrinsic hardness
for NbN2 show that it is almost competitive with hard
materials RuN2, IrN2, and Nb2N3, which indicate that
NbN2 is a potential hard material. According to the Born
stability criteria and the Pugh criterion, NbN2 is mechan-
ically stable and a ductile material at 0–100 GPa, respec-
tively. NbN2 possesses distinct elastic anisotropy and the
degree of anisotropy will reduce with increasing pressure.
Through the quasi-harmonic Debye model, special heat
capacity CV and thermal expansion α as functions of
pressure and temperature, dependences of Debye tem-
perature ΘD entropy S and Grüneisen parameter γ on
pressure and temperature have also been analyzed.
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