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We investigate a single-photon quantum router in quantum fluctuation of fields. The optomechanical system
composed of a cigar-shaped Bose–Einstein condensate trapped in an ultrahigh-finesse Fabry–Pérot cavity. We show
how an analog of electromagnetically induced transparency in an optomechanical system can be used to produce a
switch for a quantum fluctuation field using very low pumping field strength. The numerical results show that the
output photon is completely different by turning the pump off and turning the pump on. We also show that the
quantum noise sources are very small. This optomechanical system can serve as a single-photon quantum router.
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1. Introduction

In recent years, much research has been conducted in
the field of quantum information science [1, 2]. Pho-
tons can carry quantum information like electrons [3–5].
There are many advantages using photon-transmitted in-
formation. For example, it is possible to distribute infor-
mation over long distances without much decoherence.
The method can also provide strong interactions between
radiation and matter as photons that do not interact
by themselves. In addition, photon-transmitted infor-
mation can propagate fast and interact with the environ-
ment rarely. Many quantum information protocols such
as quantum cryptography [6] and quantum networks [7]
require single-photon. A single-photon quantum router
plays a key role in quantum information science [8–13].
Single-photon routers receive high interests by both ap-
plied researchers [14, 15] and theoreticians [16]. Sev-
eral proposals have been made for the realization of a
single-photon router. In an early study, atomic electro-
magnetically induced transparency (EIT) in a cavity has
been used to operate a single-photon router [17]. Fur-
thermore, a single atom in a strongly coupled waveguide
array and atoms via surface plasmons on a nanowire were
used to realize a single-photon router [18–21]. There are
also reports of a single-photon router based on a coupled
cavity optomechanical systems, such as nanomechanics
mirrors and BEC in optical cavities [22, 23]. In this
study, we show how a Bose–Einstein condensate(BEC)–
optomechanical system can be used to build a single-
photon quantum router.

A BEC-optomechanical system, which consists of a
BEC trapped inside an optical cavity, has been proposed
and attracted much attention [24–30]. For such a system,
the intra-cavity laser field excites a momentum side-mode
of the condensate [24–26]. Furthermore, in the BEC
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optomechanical system, a strong coupling range can be
reached easily even with an ultra-low pump power [27–
30]. More importantly, the BEC can be trapped on a
small scale, and thus a robust miniature device can be
implemented easily [31–33]. The BEC-optomechanical
system [22], which is fed by both a detuned strong pump
field and a weak probe field, can serve as a single pho-
ton router. Now we will study the quantum fluctuation
of the cavity without any input probe field, the BEC-
optomechanical system can be used to produce a switch.
The quantum fluctuation of the fields arises directly from
the fluctuation of the vacuum input and the fluctuation
of the effective of the mechanical oscillator mode. There-
fore, the BEC-optomechanical system is a promising can-
didate to build a quantum single-photon router.

The paper is structured as follows. In Sect. 2, we derive
the Hamiltonian of the optomechanical systems consist-
ing of a BEC trapped inside an optical cavity. The re-
flection and transmission of the output field are obtained
in this section. In Sect. 3, the numerical results show
that the output photon changes completely different by
turning the pump off and turning the pump on. We also
show that the quantum noise sources of this phenomenon
are very small. A summary is presented in Sect. 4.

2. The physical model

We consider an optomechanical system with a cigar-
shaped BEC trapped in an ultrahigh-finesse Fabry–Pérot
cavity of length L, which is formed by two fixed mirrors
with finite identical transmission, see Fig. 1. We denote
the cavity field by ĉ, frequency ωc, decay rate κ, ĉin and
d̂in are the quantum fields. We give the Hamiltonian of
the optomechanical systems consisting of a BEC trapped
inside an optical cavity as

Ĥ = ~ωcĉ†ĉ− i~Ep(ĉe iωpt − ĉ† e− iωpt)

+

∫ L

0

dxΨ †(x)[
−~2

2ma

d2

dx2
+ Vext(x)]Ψ(x)

+

∫ L

0

dxΨ †(x)~U0 cos2(kx)ĉ†ĉΨ(x), (1)
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Fig. 1. The optomechanical system consisting of a
Bose–Einstein condensate trapped inside an optical cav-
ity. The cavity, which decays at rate κ, is driven by one
laser with frequency ωp.

where the first term describes the energy of the intracav-
ity field, ωc is the cavity frequency, and ĉ is the cavity
field’s annihilation operator. The second term describes
the energy of the pump laser field with strength Ep, and
Ep is related to the laser power P via |Ep| =

√
2Pκ/~ωp,

and κ is the cavity decay rate. The third term de-
scribes the Hamiltonian of the condensate of the BEC
in the case of avoiding atom–atom interaction and as-
suming a shallow external trapping potential. Here Ψ is
a bosonic field annihilation operator, ma is the atomic
mass, Vext is the external potential. The fourth term
describes the energy of the atom–cavity coupling inter-
action, where U0 = g20/∆a is the maximum light shift
that an atom experiences in the cavity mode. ∆a de-
scribes the detuning between the pump laser frequency
and the atomic transition frequency, g0 is the maximum
coupling strength between a single atom and a single in-
tracavity photon, k is the wave number of the light field.
In our paper, we consider the following strong coupling
regime (Ng20/|∆a| � κ, where N is the average number
of atoms).

We consider the simplest situation where the optical
field is weak enough, and only the first two symmet-
ric momentum side modes with moment ±2~k are ex-
cited by fluctuations resulting from the atom–light in-
teraction. Considering the parity conservation and the
Bogoliubov approximation, the atomic field operator can
be expanded as follows:

Ψ(x) =

√
1

L
â0 +

√
2

L
cos(2kx)â2, (2)

here â0 and â2 are bosonic annihilation operators for
atoms in the zero-momentum state and side-mode com-
ponents, respectively. The total number of atoms is
â†0â0 + â†2â2 = N . Because the population in the zero-
momentum state is much larger than the population in
the side-mode state, we can neglect the population in
the side-mode state. We use â†0â0 ' N , and â instead
of â2. In a rotating frame at driving field frequency ωp,
the Hamiltonian of the optomechanical system can be ex-
pressed as follows:

Ĥ = ~∆cĉ
†ĉ− i~Ep(ĉ− ĉ†) + ~ωmâ†â

+~g(â† + â)ĉ†ĉ, (3)

where ωm = 4ωrec = 4~k2
2m , ∆c = ω′c − ωp, ω′c =

ωc + 1
2U0N , and g = U0

2

√
N
2 . The first term is the en-

ergy of the intra-cavity field, ∆c is the effective Stark-
shift detuning, 1

2U0N denote the frequency shift of the
empty cavity resonance induced by the BEC. The sec-
ond term represents the energy of the driving field. The
third term is the energy of the Bogoliubov mode of the
collective oscillation of the BEC, where â(â†) denote the
annihilation (creation) operator of the Bogoliubov mode.
The last term describes the coupling energy between the
BEC and the cavity, where g is the coupling strength.

The motion of BEC in the cavity is formally analo-
gous to the harmonic oscillator. We define the position
operator X̂ = 1√

2
(â + â†), and the momentum operator

Ŷ = i√
2
(â†− â). The commutation relation is [X̂, Ŷ ] = i.

According to the commutation relation [â, â†] = 1, and
[ĉ, ĉ†] = 1, we add up all the quantum fields, thermal
fluctuations, and the Hamiltonian from Eq. (3), the cou-
pled quantum Langevin equations for ĉ, X̂ and Ŷ can be
obtained as

dĉ

dt
= −(i∆c + 2κ+ igX̂)ĉ+ Ep +

√
2κĉin +

√
2κd̂in,

dX̂

dt
= ωmŶ − γsmX̂ + f̂1m,

dŶ

dt
= −ωmX̂ − gĉ†ĉ− γsmŶ + f̂2m. (4)

The corresponding noises operators are ĉin, d̂in, f̂1m and
f̂2m. Noise operators depends on the reservoir variables.
On the one hand, we have introduced the input vacuum
noise operators ĉin, d̂in with the zero average values,
which satisfies the Markovian correlation functions
〈x̂in(t)x̂†in(t′)〉 = 2κ(np + 1)δ(t− t′),

〈x̂†in(t′)x̂in(t)〉 = 2κnpδ(t− t′), (5)
where x = ĉ, d̂, the cavity field ĉ is coupled to the in-
put quantum field ĉin and d̂in, with the average thermal
photon number np, which is nearly zero at cavity fre-
quency [34]. δ(t− t′) is the Dirac delta function.

On the other hand, f̂1m and f̂2m are the thermal noise
inputs for the effective of the mechanical oscillator mode
of BEC, which also satisfy the same Markovian correla-
tion functions as those of the cavity noise
〈f̂1m(t)f̂1m(t′)〉 = γsmδ(t− t′),

〈f̂2m(t)f̂2m(t′)〉 = γsmδ(t− t′). (6)
We want to calculate the spectrum of the output field
by using the quantum Langevin Eqs. (4) and following
standard methods from quantum optics [35]. First, we
linearize the quantum Langevin equations by making the
ansatz as follow Ô = Os + δÔ (with O ∈ {ĉ, X̂, Ŷ }). Os
is the steady-state mean value of the observable and δÔ
is small fluctuation. We derive steady-state mean values
by setting all the time derivatives in Eq. (4) to zero, the
steady values are given as
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cs =
Ep

2κ+ i∆
, Xs =

−g|cs|2

ωm(1 +
γ2
sm

ωm2 )
, Ys =

γsmXs

ωm
,

(7)

with ∆ = ∆c − g2|cs|2

ωm(1+
γ2sm
ωm2 )

, cs denotes the steady state

amplitude of the cavity field. Xs (Qs) represents the
new equilibrium position (momentum) of the collective
oscillation of the BEC.

The linearized quantum Langevin equations for the
fluctuation operator are as follows:

dδĉ

dt
= −(i∆ + 2κ)δĉ− igcsδX̂ +

√
2κĉin +

√
2κd̂in,

dδX̂

dt
= ωmδŶ − γsmδX̂ + f̂1m,

dδŶ

dt
= −ωmδX̂ − g(csĉ

† + cs
∗ĉ)− γsmδŶ + f̂2m. (8)

Then, we use the Fourier transforms for these
equations f(t) = 1

2π

∫∞
−∞ f(ω)e− iωtdω, f†(t) =

1
2π

∫∞
−∞ f†(−ω)e− iωtdω for any operator f(t) ∈

{ĉ, X̂, Ŷ }. Equation (8) can be written as

− iωδĉ(ω) = −(i∆ + 2κ)δĉ(ω)− igcsδX̂(ω)

+
√

2κĉin(ω) +
√

2κd̂in(ω),

− iωδX̂(ω) = ωmδŶ (ω)− γsmδX̂(ω) + f̂1m(ω),

− iωδŶ (ω) = −ωmδX̂(ω)− g(csĉ
†(−ω) + cs

∗ĉ(ω))

−γsmδŶ (ω) + f̂2m(ω). (9)
The corresponding noises operators ĉin, d̂in, f̂1m and f̂2m
satisfy the following correlation function:
〈x̂in(ω)x̂†in(−ω)〉 = 1,

〈f̂1m(ω)f̂1m(−ω)〉 = γsm,

〈f̂2m(ω)f̂2m(−ω)〉 = γsm, (10)
and the solution of δĉ(ω):

δĉ(ω) = E(ω)(ĉin(ω) + d̂in(ω)) + F (ω)(ĉ†in(−ω)

+d̂†in(−ω)) + V1(ω)f̂1m(ω) + V2(ω)f̂2m(ω), (11)
in which

E(ω) =

√
2κ

(2κ+ i∆− iω)
+

√
2κig2|cs|2(2κ− i∆− iω)

d(ω)
,

F (ω) =
i
√

2κg2c2s
d(ω)

,

V1(ω) =
− i
√

2κgcs(2κ− i∆− iω)(γsm − iω)

d(ω)ωm
,

V2(ω) =
− i
√

2κgcs(2κ− i∆− iω)

d(ω)
, (12)

with

d(ω) =
((2κ− iω)2 + ∆2)(ωm

2 + (γsm − iω)2)

ωm

−2∆g2|cs|2. (13)

Then, using the input-output relation cout(ω) =√
2κc(ω)− cin(ω), defining the spectrum of the field via
〈δĉ†(−Ω)δĉ(ω)〉 = 2πSc(ω)δ(ω + Ω), 〈δĉ(−Ω)δĉ†(ω)〉 =
2π(Sc(ω) + 1)δ(ω + Ω). The incoming vacuum field din
is 〈δd̂†(−Ω)δd̂(ω)〉 = 2πδ(ω + Ω) with Sdin = 0. We can
obtain the spectrum of the output fields
§cout(ω) = R(ω)Scin + Sv(ω) + S1(ω) + S2(ω),

Sdout(ω) = T (ω)Scin + Sv(ω) + S1(ω) + S2(ω). (14)
Here

R(ω) = |
√

2κE(ω)− 1|2,

T (ω) = |
√

2κE(ω)|2, Sv(ω) = 2|
√

2κF (ω)|2,

S1(ω) = γ1|V1(ω)|2, S2(ω) = γ2|V1(ω)|2. (15)
In Eqs. (14), R(ω) and T (ω) are the contributions arising
from the presence of a single photon in the input field.
Sv(ω) is contribution the nature of the vacuum field.
S1(ω) and S2(ω) are the contributions from the fluctu-
ation of the effective of the mechanical oscillator mode.
Equations (14) are similar to the output field in Ref. [16].
However, our results are different from the results in
Ref. [16]. For example, the BEC acts as the vacuum state
of the mechanical oscillator mode. Also, the nanome-
chanical mirror is replaced by a cigar-shaped BEC.

3. Results and discussion

In this section we discuss a quantum router based
on the numerical solutions of Eqs. (14). To make this
study of the quantum router in the BEC-optomechanical
experimentally feasible, we choose the realistic parame-
ters from presently available experimental setups [25–27].
The parameters of the systems are as follows: the wave-
length of the cavity field is λ = 780 nm and the cavity
length is L = 1.25 × 10−4. We consider N = 1.2 × 105

atoms trapped inside the optomechanical cavity with a
recoil of ωres = 2π × 3.8 kHz. The maximum cou-
pling strength g0 = 2π × 10.9 MHz and the detuning
∆a = 2π × 32 GHz and BEC acts as the mechanical os-
cillator mode with a damping rate γsm = 2π × 0.4 kHz.
The cavity with decay rate is κ = 2π × 1.3 kHz.

In this paper, we consider the following two conditions.
First, the optomechanical system is operated in resolved
sideband condition κ � ωm. Second, we will assume
∆ = ωm, and anti-Stokes scattering survives inside the
cavity. The reflection spectrum R(ω) and the transmis-
sion spectrum T (ω) of the single photon as a function
of normalized frequency ω/ωm are discussed in Figs. 2
and 3. One can find from Fig. 2 that only an inverted
Lorentzian is in the reflection spectrum in the absence
in the pumping field. However, the situation is com-
pletely different when we increase the pumping field. On
one hand, the transparency window appears with the in-
crease of the pumping field, on the other hand, the width
of the transparency window increases with increase of
the pumping field. One can find from Fig. 3 that only
a standard Lorentzian appears in the transmission spec-
trum in the absence of the pumping field. In the presence
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Fig. 2. The reflection spectrum R(ω) of the single pho-
ton as a function of the normalized frequency ω/ωm,
and the normalized field strength Ep (units of E0 =
2.0 × 103 Hz). The other parameters are λ = 780 nm,
L = 1.25 × 10−4, N = 1.2 × 105, ωres = 2π × 3.8 kHz,
γsm = 2π × 0.21 kHz, κ = 2π × 1.3 kHz, ∆a =
2π × 32 GHz and g0 = 2π × 10.9 MHz.

Fig. 3. The transmission spectrum T (ω) of the single
photon as a function of the normalized frequency ω/ωm,
and the normalized field strength EP . The other param-
eters are the same as those shown in Fig. 2.

Fig. 4. The noise spectrum Sv(ω) as a function of the
normalized frequency ω/ωm. The other parameters are
the same as those shown in Fig. 2.

Fig. 5. The noise spectrum S1(ω) as a function of the
normalized frequency ω/ωm. The other parameters are
the same as those shown in Fig. 2.

Fig. 6. The noise spectrum S2(ω) as a function of the
normalized frequency ω/ωm. The other parameters are
the same as those shown in Fig. 2.

of the pumping field, the situation is completely differ-
ent. Generally speaking, in the absence of the pumping
field, the output field can transmit completely from the
right port, while the reflection is totally suppressed. We
note that R(ωm) ≈ 0 and T (ωm) ≈ 1, so the single pho-
ton is completely reflected through the cavity to the left
output port. However, in Figs. 2 and 3, the situation is
completely different for an increase of the pumping field.
The output field can completely reflect from the left port
but its transmission is completely suppressed.

We now discuss the effect of the quantum noise on the
reflection and transmission spectrum of a single-photon.
From Fig. 4, we can see the behavior of the vacuum noise
Sv(ω) for two different values of the field strength. The
contribution of the noises maximum is about 10%, which
is significant. For the thermal noise due to the effective
mirror S1(ω) and S2(ω) for two different values of the
field strength are shown in Figs. 5 and 6. One can find
that for larger pumping field powers, S1(ω) and S2(ω)
split into two separate peaks. The contribution of the
thermal noises maximum is about 10%, which is signifi-
cant, too.

4. Conclusion

We discuss the single-photon quantum router in a
BEC-optomechanical system, by following the same
method as reported in Ref. [16]. The system consists
of a cigar-shaped BEC trapped inside an optical cavity.
We have shown that the BEC-optomechanical system can
be used as a single-photon quantum router. We have
also shown that the quantum noise sources for this phe-
nomenon are very small. In addition, we have suggested
a specific set of experimental parameters to be observed
in a laboratory.
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