
Vol. 132 (2017) ACTA PHYSICA POLONICA A No. 4

Weakly Bound States in Heterogeneous Waveguides:
A Calculation to Fourth Order
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We have extended a previous calculation of the energy of a weakly heterogeneous waveguide to fourth order
in the density perturbation, deriving its general expression. For particular configurations where the second and
third orders both vanish, we discover that the fourth order contribution lowers in general the energy of the state,
below the threshold of the continuum. In these cases the waveguide possesses a localized state. We have applied
our general formula to a solvable model with vanishing second and third orders reproducing the exact expression
for the fourth order.
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1. Introduction

It is nowadays a well-known fact that bound states can
appear in infinite waveguides or tubes, in presence of an
arbitrarily weak bending or of a local, small, enlargement
of its section. This behavior has been proved for general
configurations in Refs. [1, 2] and it has been investigated
for several specific geometrical configurations. It is im-
possible to refer to all the different works, but we would
like to mention the case of the infinite symmetric cross
studied by Schult and collaborators in Ref. [3]. Although
Ref. [3] is focused on the study of the quantum mechan-
ical bound states of the symmetric cross, the problem is
relevant in many areas of physics, such as acoustics, elec-
tromagnetism and fluid dynamics (in this respect, it is
important to cite the work by Ursell in Refs. [5, 6] who
studied the emergence of trapped modes in a semi-infinite
canal of fixed width terminating in a sloping beach).

From a mathematical point of view, one needs to solve
the Helmholtz equation on an open, infinite domain,
with the Dirichlet boundary conditions at the border.
In particular, Bulla and collaborators have considered in
Ref. [7] the problem of an infinite homogeneous wave-
guide on the region

Ωλ =
{

(x, y) ∈ R2|0 < y < 1 + λf(x)
}
, (1)

obeying the Dirichlet boundary conditions at the border,
assuming that f is a C∞(R) function of compact support
with f ≥ 0. In their calculation λ > 0 is a parameter
which controls the deformation of the border (particu-
larly the case λ = 0 reduces to a straight waveguide,
with a purely continuum spectrum). These authors were
able to show that, if

∫∞
−∞ f(x)dx > 0, there is at least one

eigenvalue falling below the continuum threshold. They
also obtained the exact expression for the energy of the
fundamental mode, to second order in the parameter con-
trolling the deformation. Soon after, Exner and Vugal-
ter [8] studied this problem, when the deformation of the
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border averages out, i.e. when
∫∞
−∞ f(x)dx = 0. Inter-

estingly they found out that under certain conditions it
is still possible to have a bound state and that the energy
gap scales as the fourth power in λ.

Recently, the present author and collaborators have
studied in Ref. [9] a different but related problem: the
case of a infinite straight waveguide containing a small in-
homogeneity centered at an internal point (assuming the
Dirichlet boundary conditions at the border). In that
case, it was proved that, when the heterogeneity corre-
sponds to a locally denser region, the eigenfunction of the
ground state becomes localized around the heterogeneity
and the corresponding energy falls below the continuum
threshold. The calculation of Ref. [9] was carried out
using perturbation theory up to third order, using an
approach originally proposed by Gat and Rosenstein in
Ref. [10] for a different problem. As a matter of fact,
the implementation of the perturbative scheme must be
done with care, since the naive identification of the un-
perturbed operator with the negative Laplacian would
lead to the appearance of divergent contributions in the
coefficients of the perturbative series for the energy of
the ground state. The emergence of these (infrared) di-
vergences can be easily understood since the spectrum
of (−∆) on an infinite strip is continuous and there-
fore the denominators of the coefficients in the Rayleigh–
Schrödinger expansion may become arbitrarily small. To
avoid this problem in Ref. [10] a suitable unperturbed
operator was used, following the approach of Gat and
Rosenstein: the spectrum of this operator contains now
a localized state and the continuum, with the energy of
the localized state falling below the continuum threshold
(the separation between the two depends on a parameter
β in the unperturbed operator which will be eventually
set to zero). In this way one is able to carry out the
usual perturbative expansion, obtaining explicit expres-
sions which are finite when β → 0+.

In this paper we have extended the calculation of
Ref. [9], obtaining the exact general expression for the
energy correction to fourth order in the density pertur-
bation. The greater technical difficulty of the present
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calculation derives both because from the larger number
of terms and both from their different nature. Working
in our perturbation scheme we find that all the infrared
divergent terms (i.e. terms which diverge as β → 0+)
potentially contained in E(4)

0 correctly cancel out, as ex-
pected. Moreover, for the case where the second and
third order corrections both vanish, we find that there
is a non-vanishing fourth order correction to the energy
of the fundamental mode, which lowers the energy below
the continuum threshold. Since the problem of Bulla et
al. [7] may be converted to the problem of an infinite het-
erogeneous waveguide, using a suitable conformal map,
our results also provide an alternative approach to the
problems studied in Refs. [7] and [8]. Additionally, our
formulae apply as well to the case of infinite heteroge-
neous and deformed waveguides (in this case the “density”
in our formulae would involve both the physical density of
the waveguide and the “conformal density” obtained from
the mapping), thus allowing to treat more general prob-
lems. The fourth order formula obtained in the present
paper have been recently applied in Ref. [11] to obtain
the behaviour of the lowest eigenvalue of a “broken strip”,
in the case of infinitesimal bendings, reproducing the nu-
merical results in the literature [12].

The paper is organized as follows: in Sect. 2 we discuss
the perturbation theory, and present the general formulae
for the energy to fourth order; in Sect. 3 we consider a
solvable model, reproducing the exact results to fourth
order; in Sect. 4 we present our conclusions.

2. Perturbation theory

In a recent paper we have obtained the explicit expres-
sion for the energy of the fundamental mode of an infinite,
weakly heterogeneous two-dimensional waveguide, up to
third order in the density perturbation. It is assumed
that the inhomogeneity is small and localized at some in-
ternal point of the waveguide. Under these assumptions
it is proved that, when the perturbation corresponds to
a locally denser material, a bound state, localized at the
inhomogeneity appears.

Mathematically, we are considering the Helmholtz
equation

(−∆)Ψn (x) = EnΣ (x)Ψn (x) , (2)
where |x| < ∞ and |y| ≤ b/2. The solutions obey the
Dirichlet boundary conditions at the border

Ψn(x,±b/2) = 0 (3)
and Σ (x, y) > 0 for |x| <∞ and |y| ≤ b/2.

Expressing the density as Σ (x) = 1 + σ (x), where
lim|x|→∞ σ (x) = 0, and assuming that |σ(x)| � 1 for
x ∈ (−∞,∞), we can perform a perturbative expansion
in the density perturbation.

The general formulae for the perturbative corrections
to the energy of the fundamental mode up to third order
have been derived in Refs. [9] and [13] and read

E
(1)
0 = −〈σ〉ε0, (4)

E
(2)
0 = 〈σ〉2ε0 − 〈σΩσ〉ε20, (5)

E
(3)
0 = −ε0〈σ〉3 + 3〈σ〉〈σΩσ〉ε20 + ε30(〈σ〉〈σΩΩσ〉

−〈σΩσΩσ〉), (6)
where

Ω̂ ≡
∑
n

|n〉〈n|
εn − ε0

(7)

and εn and |n〉 are the eigenvalues and eigenstates of the
unperturbed operator†.

As we have discussed in Ref. [9], the identification of
the unperturbed operator must be done with care, for
the case of an infinite waveguide: as a matter of fact, the
obvious candidate, corresponding to an infinite, straight
and homogeneous waveguide cannot be used, since its
spectrum is continuous and the fundamental mode can
thus be excited to states which are arbitrarily close in en-
ergy. In this case, the perturbative formulae would con-
tain infrared divergences, which would completely spoil
the calculation. In a different context Gat and Rosen-
stein [10] have devised a perturbation scheme that allows
to avoid these infrared divergences: in our case this pro-
cess amounts to use as unperturbed operator

Ĥ0 = −∆− 2βδ(x), (8)
where β is an infinitesimal parameter to be set to 0 at
the end of the calculation.

As discussed in Ref. [9], the basis set of eigenfunctions
of Ĥ0 is

Ψp,n(x, y) = ψn(y)⊗


φo(x) ground state

φ
(e)
p (x) even state

φ
(o)
p (x) odd state

,

where
φ0(x) =

√
β e−β|x|,

φ(e)p (x) =

√
2

p2 + β2
(p cos(px)− β sin(p|x|)) ,

φ(o)p (x) =
√

2 sin(px),

and

ψn(y) =

√
2

b
sin
[nπ
b

(y + b/2)
]
.

The eigenvalues of Ĥ0 are ‡

ε0,n = −β2 +
n2π2

b2
,

ε(e)p,n = ε(o)p,n = p2 +
n2π2

b2
.

We find convenient to introduce the Dirac notation |0, n〉,
|p(e), n〉 and |p(o), n〉 to indicate the eigenstates of Ĥ0.

†In the following we will adopt the notation 〈Â〉 to indicate the
expectation value of the operator Â in the ground state of Ĥ0.

‡Note that ε0,1 = −β2 + π2

b2
< π2

b2
and therefore it is separated

from the continuum.
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Using the explicit form of the eigenfunctions of Ĥ0

given above, one can work out the perturbative expres-
sions for the energy and, after taking the limit β → 0+,
obtain the finite expressions given in Ref. [9]:

lim
β→0+

E
(1)
0 = 0, (9)

lim
β→0+

E
(2)
0 = −π

4

b6

×

(∫ ∞
−∞

dx

∫ b/2

−b/2
dyσ(x, y) cos2

(πy
b

))2

, (10)

lim
β→0+

E
(3)
0 =

2π6

b9

×
∫ ∞
−∞

dx3

∫ b/2

−b/2
dy3 cos2

(πy3
b

)
σ (x3, y3)

×
∫ ∞
−∞

dx1

∫ b/2

−b/2
dy1

∫ ∞
−∞

dx2

∫ b/2

−b/2
dy2

×
[
|x1 − x2|σ (x1, y1)σ (x2, y2) cos2

(πy1
b

)
× cos2

(πy2
b

)
− b cos

(πy1
b

)
cos
(πy2
b

)
σ (x1, y1)

×σ (x2, y2)G(0)2 (x1,x2)
∣∣∣
β=0

]
. (11)

where§

G(`)0 (x,x′) ≡
∫ ∞
0

dp

2π

φp(x)φp(x
′)ψ1(y)ψ1(y′)

(εp,1 − ε0,1)`+1

G(`)1 (x, x′) ≡
∞∑
n=2

φ0(x)φ0(x′)ψn(y)ψn(y′)

(ε0,n − ε0,1)`+1

G(`)2 (x,x′) ≡
∞∑
n=2

∫ ∞
0

dp

2π

φp(x)φp(x
′)ψn(y)ψn(y′)

(εp,n − ε0,1)`+1

Before discussing the fourth order, it is worth to com-
ment that, as discussed in [9], a bound state is present
only if the condition∫ ∞

−∞

∫ b/2

−b/2
σ(x, y) cos2

πy

b
dxdy > 0 (12)

is met.

We briefly review the discussion in Ref. [9]: the condi-
tion (12) can be derived calculating the Rayleigh quotient

W =
〈Ψ |(−∆)|Ψ〉
〈Ψ |Σ|Ψ〉

using the variational function

Ψ(x, y) =
√
ae−a|x|

√
2

b
sin

nπ(y + b/2)

b

§Note that we have changed the notation of Ref. [9] to allow
referring to the more general Green functions.

and minimizing with respect to the variational
parameter a:

amin ≈
π2

b3

∫ +∞

−∞

∫ b/2

−b/2
σ(x, y) cos2

πy

b
dxdy.

Given that, in order to obtain a bound state, a must be
positive, the condition (12) follows. In a similar way, one
can derive the expression for the perturbative correction
to the energy of the fundamental mode to fourth order;
we find

E
(4)
0 = 〈σ〉4ε0 − 6〈σ〉2〈σΩσ〉ε20 +

(
2〈σΩσ〉2

+4〈σ〉〈σΩσΩσ〉 − 4〈σ〉2〈σΩΩσ〉
)
ε30

−
(
〈σΩσΩσΩσ〉 − 〈σΩσ〉〈σΩΩσ〉

−2〈σ〉〈σΩΩσΩσ〉+ 〈σ〉2〈σΩΩΩσ〉
)
ε40. (13)

The perturbative expressions written above must be eval-
uated taking the limit β → 0+ at the end of the calcu-
lation. For this reason it is convenient to work on the
expectation values which appear in the expression and
expand them around β = 0.

For example, in the simplest case we have

〈σ〉 = β

∫
dxdy e−2β|x|(ψ1(y))2σ(x, y) =

∞∑
n=1

κ
(n)
1 βn.

The expressions for the remaining expectation values
can be found in the arxiv version of the present paper,
Ref. [14]. In particular, in Table I the coefficients κ(j)n
are subdivided into two classes: those which only con-
tain longitudinal contributions (left column) and those
which contain both longitudinal and tranverse contribu-
tions (right column).

TABLE I

Coefficients appearing in the expression of the energy of
the fundamental mode up to fourth order in perturba-
tion theory. The coefficients on the right side contain
contributions also from the transversal modes.

‖ ‖ + ⊥
κ
(1)
1 κ

(2)
1

κ
(0)
2 κ

(1)
2 κ

(2)
2

κ
(−2)
3 κ

(−1)
3 κ

(0)
3

κ
(−1)
4 κ

(0)
4

κ
(−4)
5 κ

(−3)
5 κ

(−2)
5

κ
(−3)
6 κ

(−2)
6 κ

(−1)
6

κ
(−2)
7 κ

(−1)
7 κ

(0)
7

Upon substitution of these expressions in the pertur-
bative contributions of the energy we have

E
(1)
0 = O(β), (14)

E
(2)
0 = −ε20κ

(0)
2 +O(β), (15)

E
(3)
0 = ε30

κ
(1)
1 κ

(−2)
3 − κ(−1)4

β

+ε30

[
κ
(2)
1 κ

(−2)
3 + κ

(1)
1 κ

(−1)
3 − κ(0)4

]
+O(β), (16)
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and

E
(4)
0 = η4a

(
ε40
β2
− 4ε30

)
+ η4b

ε40
β

+ η4cε
3
0

+η4dε
4
0 +O(β), (17)

where
η4a ≡(
−κ(−4)5 (κ

(1)
1 )2 + 2κ

(−3)
6 κ

(1)
1 + κ

(0)
2 κ

(−2)
3 − κ(−2)7

)
,

η4b ≡
(
−κ(−3)5 (κ

(1)
1 )2 − 2κ

(2)
1 κ

(−4)
5 κ

(1)
1 + 2κ

(−2)
6 κ

(1)
1

+κ
(1)
2 κ

(−2)
3 + κ

(0)
2 κ

(−1)
3 + 2κ

(2)
1 κ

(−3)
6 − κ(−1)7

)
,

η4c ≡ 2
(

(κ
(0)
2 )2 + 2κ

(1)
1

(
κ
(−1)
4 − κ(1)1 κ

(−2)
3

))
,

η4d ≡
(
−κ(−2)5 (κ

(1)
1 )2 − 2κ

(3)
1 κ

(−4)
5 κ

(1)
1

−2κ
(2)
1 κ

(−3)
5 κ

(1)
1 + 2κ

(−1)
6 κ

(1)
1 + κ

(2)
2 κ

(−2)
3

+κ
(1)
2 κ

(−1)
3 + κ

(0)
2 κ

(0)
3 − (κ

(2)
1 )2κ

(−4)
5 + 2κ

(3)
1 κ

(−3)
6

+2κ
(2)
1 κ

(−2)
6 − κ(0)7

)
.

Observe that the potentially divergent terms in E
(3)
0

and E
(4)
0 only depend on the contributions stemming

from the longitudinal excitations. While it was already
proved in Ref. [9] that E(3)

0 is finite for β → 0+, as
it can be checked explicitly using the results in Ap-
pendix B of Ref. [14], it is straightforward to verify that
η4a = η4b = 0. Therefore E(4)

0 is finite for β → 0+, as
expected.

Using the expressions in Appendix of Ref. [14] we have

η4c =
2

b4

(∫
dxdy cos2

πy

b
σ(x, y)

)4

and
η4d = η

‖
4d + η⊥4d,

where η
‖
4d contains only contributions from longitudi-

nal modes while η⊥4d contains contributions also from
transversal modes.

Their explicit expressions are¶

η
‖
4d =

1

b4

∫
dx1dy1

∫
dx2dy2x1(2x2 − x1)σ(x1)σ(x2)

× cos2
(πy1
b

)
cos2

(πy2
b

)(∫
dx3dy3 cos2

(πy3
b

)
×σ(x3)

)2
− 2

b4

∫
dx1dy1

∫
dx2dy2

∫
dx3dy3

×|x1 − x2||x2 − x3|σ(x1)σ(x2)σ(x3) cos2
(πy1
b

)

¶The expression for g
(0,0)
2 (x1, y1, x2, y2) is reported in Ap-

pendix A of Ref. [14].

× cos2
(πy2
b

)
cos2

(πy3
b

)
×
∫

dx4dy4σ(x4)

× cos2
(πy4
b

)
− 1

b4

(∫
dx1dy1

∫
dx2dy2

×|x1 − x2| cos2
(πy1
b

)
cos2

(πy2
b

)
σ(x1)σ(x2)

)2
,

(20)

η⊥4d =
1

b3

∫
dx1dy1

∫
dx2dy2

∫
dx3dy3

∫
dx4dy4

×σ(x1)σ(x2)σ(x3)σ(x4) cos
(πy1
b

)
cos
(πy2
b

)
× cos2

(πy3
b

)
cos2

(πy4
b

)
(2 |x1 − x3|+ |x3 − x4|)

×g(0,0)2 (x1,x2)− 2

b2

∫
dx1dy1

∫
dx2dy2

×
∫

dx3dy3 cos
(πy1
b

)
cos
(πy3
b

)
g
(0,0)
2 (x1,x2)

×g(0,0)2 (x2,x3)σ(x1)σ(x2)σ(x3)

×
∫

dx4dy4 cos2
(πy4
b

)
σ(x4)

− 1

b2

(∫
dx1dy1

∫
dx2dy2 cos

(πy1
b

)
× cos

(πy2
b

)
g
(0,0)
2 (x1,x2)σ(x1)σ(x2)

)2
. (21)

We may write the perturbative formulae obtained above
in a more compact form as

E
(2)
0 = −π

2

b2
∆2

2, (22)

E
(3)
0 = −2

π2

b2
∆2(Λ1 −∆3), (23)

E
(4)
0 = −π

2

b2
[
−2∆4

2 −∆2
2∆4 + 2∆2∆5 + ∆2

3 − 2Λ2

−∆3Λ1 + 2∆2Λ3 + Λ2
1

]
, (24)

where we have introduced the definitions

∆1 ≡
π

b2

∫
dxdyσ(x),

∆2 ≡
π

b2

∫
dxdyσ(x) cos2

πy

b
,

∆3 ≡
π3

b5

∫
dx1dy1

∫
dx2dy2σ(x1)σ(x2)|x1 − x2|

× cos2
πy1
b

cos2
πy2
b
,

∆4 ≡
π4

b6

∫
dx1dy1

∫
dx2dy2σ(x1)σ(x2)x1(2x2 − x1)

× cos2
πy1
b

cos2
πy2
b
,

∆5 ≡
π5

b8

∫
dx1dy1

∫
dx2dy2

∫
dx3dy3σ(x1)σ(x2)

×σ(x3)|x1 − x2||x2 − x3| cos2
πy1
b

cos2
πy2
b

cos2
πy3
b
,
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Λ1 ≡
π3

b4

∫
dx1dy1

∫
dx2dy2σ(x1)σ(x2) cos

πy1
b

× cos
πy2
b
g
(0,0)
2 (x1,x2),

Λ2 ≡
π6

b9

∫
dx1dy1

∫
dx2dy2

∫
dx3dy3

∫
dx4dy4

×σ(x1)σ(x2)σ(x3)σ(x4)|x1 − x3| cos
πy1
b

cos
πy2
b

× cos2
πy3
b

cos2
πy4
b
g
(0,0)
2 (x1,x2),

Λ3 ≡
π5

b6

∫
dx1dy1

∫
dx2dy2

∫
dx3dy3σ(x1)σ(x2)

×σ(x3) cos
πy1
b

cos
πy3
b
g
(0,0)
2 (x1,x2)g

(0,0)
2 (x2,x3),

where ∆1 is the total extra mass of the inhomogeneous
waveguide.

The energy up to fourth order can then be arranged in
the form

∆E0 ≈ E(2)
0 + E

(3)
0 + E

(4)
0 =

−π
2

b2

{(
∆2 + (Λ1 −∆3)2

)2
+ Γ

}
, (25)

where
Γ ≡

[
−2∆4

2 + ∆2∆3 −∆2
2∆4 + 2∆2∆5−∆3Λ1

−2Λ2 + 2∆2Λ3] . (26)
When we apply the formulae above to the solvable model
discussed in Ref. [9] we obtain

E
(4)
0 =

σ4
(
90π6b2δ4 − 23π8δ6

)
720b8

which reproduces the exact expression for the fourth or-
der contribution reported in Ref. [9].

3. A solvable model

The case where the second and third order contribu-
tions vanish is particularly interesting and it deserves a
detailed discussion. This situation is analogous to the
case discussed by Exner and Vugalter in Ref. [8] for a
uniform, weakly deformed, waveguide.

As previously observed in Ref. [9] this occurs when the
density obeys the property∫

dxdy cos2
πy

b
σ(x) = 0.

In this limit the general formulae obtained in the previ-
ous section reduce to

η4c = 0 (27)

η
‖
4d = − 1

b4

(∫
dx1dy1

∫
dx2dy2|x1 − x2| cos2

(πy1
b

)
× cos2

(πy2
b

)
σ(x1)σ(x2)

)2
, (28)

η⊥4d = − 1

b2

[∫
dx1dy1

∫
dx2dy2 cos

(πy1
b

)

× cos
(πy2
b

)
g
(0,0)
2 (x1,x2)σ(x1)σ(x2)

]2
(29)

and the energy of the fundamental mode falls below the
threshold of the continuum, signalling that the corre-
sponding eigenfunction is localized in the region of the
heterogeneity.

To test this prediction, we consider a solvable model,
represented by an infinite heterogeneous waveguide, par-
allel to the horizontal axis and obeying the Dirichlet
boundary conditions on y = ±b/2 (see Fig. 1).

The density is

Σ (x) =


1 + σ1, |x| < δ1/2

1 + σ2, δ1/2 < |x| < δ2/2

1, |x| > δ2/2

,

where δ2 ≥ δ1 ≥ 0 (for σ1 = σ2 this problem reduces to
the one discussed in Ref. [9]).

Fig. 1. Heterogeneous waveguide with three regions of
different density.

We look for the solution to the Helmholtz equation
−∆Ψ(x, y) = EΣ (x)Ψ(x, y)

in the form

Ψ(x, y) =

√
2

b
sin

πn(y + b/2)

b

×


A1 cos(p1x), |x| < δ1/2

A2 cos(p2x+ q2), δ1/2 < |x| < δ2/2

A3 e−α|x|, |x| > δ2/2

,

where the unknown coefficients are to be obtained en-
forcing the continuity of the solution and its derivative at
x = δ1/2 and x = δ2/2 (since the solution for the funda-
mental mode must be even, the matching at x = −δ1/2
and x = −δ2/2 is automatic). Since we are interested
only in the fundamental mode we may set n = 1.

By asking that Ψ(x, y) be a solution to the Helmholtz
equation on each region we obtain

p1 =
√
k2(1 + σ1)− π2/b2,

p2 =
√
k2(1 + σ2)− π2/b2,

α =
√
π2/b2 − k2

From the matching of the solutions we obtain the tran-
scendental equations

A1 cos

(
δ1p1

2

)
= A2 cos

(
δ1p2

2
+ q2

)
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A1p1 sin

(
δ1p1

2

)
= A2p2 sin

(
δ1p2

2
+ q2

)
A3 e−αδ2/2 = A2 cos

(
δ2p2

2
+ q2

)
− αA3 e−αδ2/2 =

A2p2 sin

(
δ2p2

2
+ q2

)
which can be reduced to

p1
p2

tan

(
δ1p1

2

)
= tan

(
δ1p2

2
+ q2

)
, (30)

α = p2 tan

(
δ1p2

2
+ q2

)
, (31)

after eliminating the amplitudes.
We look for a solution to these equations, in the limit

of weak inhomogeneities: to perform the appropriate ex-
pansion in the density we introduce a parameter η, to
keep track of the order of the expansion and make the
substitutions σi → ησi (at the end of the calculation we
will let η → 1).

We also express k and q2 in terms of appropriate
power series

q2 =

∞∑
n=0

cnη
n/2, k =

√√√√π2

b2
+

∞∑
n=1

κnηn.

After substituting these expressions in Eqs. (30) and
(31) one obtains the explicit expression for the lowest
eigenvalue

E0 = k2 =
π2

b2
− π4 (δ1 (σ1 − σ2) + δ2σ2)

2

4b4

+
π6 (δ1 (σ1 − σ2) + δ2σ2)

24b6
(
δ31
(
2σ2

1 − 3σ2σ1 + σ2
2

)
+3δ22δ1 (σ1 − σ2)σ2 + 2δ32σ

2
2

)
+
σ4
1

(
90π6b2δ41 − 23π8δ61

)
720b8

+
π6δ31 (δ1 − δ2)σ2σ

3
1

240b8

×
(
π2
(
26δ21 + 15δ2δ1 + 5δ22

)
− 120b2

)
−π

6δ21 (δ1 − δ2)
2
σ2
2σ

2
1

576b8

×
(
π2
(
79δ21 + 86δ2δ1 + 51δ22

)
− 432b2

)
+
π6δ1 (δ1 − δ2)

3
σ3
2σ1

480b8

×
(
π2
(
37δ21 + 56δ2δ1 + 47δ22

)
− 240b2

)
−
π8 (δ1 − δ2)

4 (
47δ21 + 86δ2δ1 + 92δ22

)
σ4
2

2880b8

+
π6360b2 (δ2σ2 − δ1σ2)

4

2880b8
+ . . .

subject to the condition
δ1 (σ1 − σ2) + δ2σ2 ≥ 0.

In particular it is interesting to consider the case
σ1 = (δ1−δ2)σ2

δ1
, corresponding to a waveguide where the

heterogeneity averages to zero; in this case the energy
reduces to

E0 =
π2

b2
− π8 (δ1 − δ2)

4
δ22σ

4
2

576b8

+
π10 (δ1 − 3δ2) (δ1 − δ2)

5
δ22σ

5
2

5760b10
+ . . .

where we have reported the fifth order as well (we do not
report the fifth order for the general case, because of its
length).

For this model the perturbative formulae derived in
the previous section up to fourth order yield

E
(pert)
0 =

π2

b2
− π8

b12

(∫
dx1dy1

∫
dx2dy2|x1 − x2|

× cos2
(πy1
b

)
cos2

(πy2
b

)
σ(x1)σ(x2)

)2
=

π2

b2
− π8 (δ1 − δ2)

4
δ22σ

4
2

576b8
, (33)

which confirms the exact result of Eq. (32).

Fig. 2. Energy of the fundamental mode of the solvable
model, for the case δ2 = 1, b = 1, σ1 = (δ1−δ2)σ2

δ1
and

|σ2| = 1/10.

In Fig. 2 we plot the energy of the fundamental mode
for the case δ2 = 1, b = 1, σ1 = (δ1−δ2)σ2

δ1
, as a func-

tion of δ1. E
(±)
0 correspond to the numerical solution of

Eqs. (30) and (31) for σ2 = ±1/10, while E(pert)
0 is the

expression of Eq. (32). Notice that, while E(±)
0 departs

from the perturbative formula E
(pert)
0 for δ1 → 0, the

average of the two is remarkably close to E(pert)
0 . This is

consistent with the form of the fifth order contribution
reported in Eq. (32), which changes sign in the two cases.
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4. Conclusions

In this paper we have applied the method described
in Ref. [9] to calculate the fourth order perturbative cor-
rection to the energy of the ground state of an infinite
waveguide, with a small heterogeneity localized around a
given internal point.

We may summarize the main results with the following
points:

• the expression for E(4)
0 is finite for β → 0+, as

expected (notice that, as the perturbative order in-
creases there are more potentially divergent terms;
for instance, while the third order only contains a
term which diverges as 1/β, the fourth order con-
tains a term that diverges as 1/β2 as well);

• for waveguides where the second and third orders
vanish, there may still be a bound state and the
energy gap scales as the fourth power in the density
(consistent with the observation made in Ref. [8] for
the problem of the deformed waveguide);

• the exact results for two solvable models are repro-
duced to fourth order;

• the perturbative scheme adopted in this paper and
in Ref. [9] is fully consistent, and it could be used
to obtain higher order contributions.

In our view the calculation of the fourth order pertur-
bative correction carried out in this paper is important
for several reasons: on one hand, in special cases, such
as the broken strip studied in Ref. [12], the leading cor-
rection to the unperturbed energy depends on this con-
tribution and therefore it must be taken into account, in
second place, the calculation of higher perturbative or-
ders opens the door to the possibility of extending the
results to a nonperturbative regime (large densities and
large deformations) and of obtaining analytical results
in cases where usually only numerical results are avail-
able. One example of this is the calculation performed
by Amore and Fernández in Ref. [15], who applied the
method of Gat and Rosenstein to the case of weakly at-
tractive potentials in one dimensions up to sixth order.
The perturbative formulae obtained there were resumed
using a Pade approximant and applied to the not ex-
actly solvable problem of a Gaussian well, finding ex-
cellent agreement with the numerical result. Finally, it
is also important to underline that the present calcula-
tion, as the one of Ref. [15], prove the consistency of the
method of Ref. [10] when applied to higher orders.
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