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The structural, elastic, anisotropic, and thermodynamic properties of P3m1-BC7 and Pmm2-BC7 have been
studied in this paper utilizing first-principles calculations. In comparison with the elastic properties of Pmm2-
BC7, P3m1-BC7 exhibits slightly higher values in bulk modulus and B/G, with similar values in shear modulus,
the Young modulus, and the Poisson ratio. The calculated Pugh modulus ratio (B/G) and the Poisson ratio
demonstrates P3m1-BC7 from brittle to ductile at 93.60 and 93.73 GPa, respectively. Calculations of shear
anisotropic factor, universal elastic anisotropy index, shear modulus, the Young modulus, and the Poisson ratio
for BC7 then demonstrate that Pmm2-BC7 exhibits a larger elastic anisotropy than P3m1-BC7. Quasi-harmonic
Debye model is finally applied to investigate the Debye temperature, the coefficient of thermal expansion, heat
capacity and Grüneisen parameter of Pmm2-BC7 and P3m1-BC7.
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1. Introduction

Potentials for industrial applications of superhard ma-
terials are numerous [1], which leads to an exceptional
level of scientific interest. Experimental and theoreti-
cal efforts to pursue progressive new superhard mate-
rials have motivated studies of boron rich systems [2–
10]. Recently, there has been considerable interest on
BxCy compounds, mainly due to the discovery of its char-
acteristic superconductivity [11, 12]. Extreme Vickers
hardness (71 GPa) was claimed in a successfully syn-
thesized diamond-like BC5 phase [13]. Xu et al. [14]
have predicted two novel low-energy structures of BC7:
graphite-like Amm2 structure and diamond-like P -4m2
structures. Additional findings led to the discovery that
diamond-like BC7 was superconducting with a critical
temperature of ≈ 11.4 K and theoretical Vickers hard-
ness was 78.0 GPa, indicating a superhard material.
Phase transition pressure from graphite-like to diamond-
like was determined to be at 2.2 GPa. Zhang et al. [15]
have predicted cubic BC3 by performing a swarm struc-
ture search. Calculated hardness and ideal strength re-
sults confirm that cubic diamond-like BC3 is a super-
hard material (62 GPa) with deformation modes under
tensile and shear strains displaying intriguing bond elon-
gation and sequential bond-breaking processes leading to
remarkable extended ductility and elastic response. Uti-
lizing first-principles calculations, Zhao and Wang [16]
investigated mechanical properties and electronic struc-
ture of the recently synthesized diamond-like BC5 sys-
tematically. Liu et al. [17] discovered a potential su-
perhard material (61.9 GPa) and superconductive ma-
terials with superconducting critical temperatures reach-
ing 16.6 ≈ 23.4 K for Pmma-a (space group) phase of
diamond-like BC3.
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Utilizing particle swarm optimization (PSO) method-
ology for crystal structure prediction, Liu et al. [18] dis-
covered four potential superhard structures of P -4m2,
P3m1, Pmm2 and R3m, with energetically superior
traits to the previously proposed P -43m structure. Pre-
vious research has not systematically investigated the
new P3m1 and Pmm2 phase of BC7, including me-
chanical, elastic anisotropic and thermodynamic proper-
ties, thus detailed first-principles calculations of each for
P3m1-BC7 and Pmm2-BC7 based on density functional
theory (DFT) under high pressure are studied.

2. Theoretical method

Structural optimization and property predictions of
the BC7 polymorphs were performed in these calcula-
tions utilizing DFT [19, 20] with the generalized gradient
approximation (GGA) parameterized by Perdew, Burke
and Ernzerhof (PBE) [21] and the local density approxi-
mation (LDA) [22, 23] as implemented in the Cambridge
Serial Total Energy Package (CASTEP) code [24]. Ultra-
soft pseudopotential was applied with an energy cutoff of
700, 700, 700, 580, and 620 eV for P3m1, Pmm2, P -
6m2, P -43m and P -4m2, respectively, and Monkhorst–
Pack k-point meshes [25] within 0.025, for the Brillouin
zone sampling. Interaction between ions and electrons
were described utilizing the Vanderbilt ultrasoft pseu-
dopotentials for B and C with 2s22p1 and 2s22p2 as va-
lence electrons, respectively. Self-consistent onvergence
of the total energy is 5× 10−6 eV/atom, maximum force
on the atom is 0.01 eV/Å, maximum ionic displacement
is within 5× 10−4 Å, and the maximum stress is within
0.02 GPa.

3. Results and discussion
3.1. Structural properties

P3m1-BC7 retains a trigonal symmetry related to
the P3m1 space group, and Pmm2-BC7 retains an or-
thorhombic symmetry related to the Pmm2 space group,
respectively. Calculated lattice parameters within GGA
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and LDA functionals of P3m1-BC7 and Pmm2-BC7,
combined with previous results are displayed in Ta-
ble I. Calculated lattice parameters for P3m1-BC7 and
Pmm2-BC7 are a reasonable comparison [18]. Figure 1
displays the crystal structures of P3m1- and Pmm2-
BC7. The red and black spheres represent B and C
atoms, respectively. Pressure dependence of the equilib-
rium lattice parameters a/a0, b/b0, c/c0 and V/V0 (where
a0, b0, c0 and V0 are the equilibrium conventional lat-
tice constants at zero pressure and temperature, respec-
tively) are illustrated in Fig. 2. Compressibility along
a-axis for P3m1-BC7 is remarkably easier than along
c-axis; however, for Pmm2-BC7, compressibility along
b-axis is easier than along a-axis and c-axis. The vol-
ume compressions V/V0 as a function of pressure are
also plotted in Fig. 2b for comparison of incompressibility
for P3m1-BC7, Pmm2-BC7, c-BN, and diamond under
pressure. Incompressibility of P3m1-BC7 and Pmm2-
BC7 are demonstrated as slightly less than diamond and
slightly larger than c-BN. Table I also presents the calcu-
lated equation of state (EOS) for P3m1-BC7 and Pmm2-
BC7 under pressures from 0 to 100 GPa. The bulk mod-
ulus B and its pressure derivative B′0 are 388.21 (355.82)
and 3.70 (4.14) GPa for P3m1-BC7 (Pmm2-BC7) re-
spectively fitted to a third-order Birch–Murnaghan EOS
equation [26].

TABLE I
Lattice constants a, b, c [Å], and cell volume per formula
unit V0 [Å3]. EOS fitted bulk modulus B0 [GPa] and its
derivative B′

0 for P3m1-BC7 and Pmm2-BC7 are also
shown.

Space
group

a b c V B0 B′0

P3m1 GGAa 2.5314 8.4996 47.1667 388.21 3.70
LDAa 2.5221 8.3861 46.2001
GGAb 2.5356 8.5188 47.4305

Pmm2 GGAa 2.5455 5.0925 3.7026 47.9957 355.82 4.14
LDAa 2.5148 5.0301 3.6630 46.3375
GGAb 2.5132 5.1240 3.6870 47.4798

aThis work, bRef [18]

Fig. 1. The crystal structure of P3m1-BC7 (a) and
Pmm2-BC7 (b) (black spheres denote carbon atoms,
and blue spheres denote boron atoms).

Fig. 2. The lattice constants a/a0, b/b0, c/c0 compres-
sion as functions of pressure for P3m1-BC7 and Pmm2-
BC7 (a), and primitive cell volume V/V0 for P3m1-BC7,
Pmm2-BC7, c-BN and diamond (b).

3.2. Elastic properties and anisotropy
Elastic properties provide information related to

stability and stiffness of materials. Trigonal crystals
feature six independent calculated elastic constants
(Cij) for P3m1-BC7; however, orthorhombic crystals
feature eight independent calculated elastic constants
for P3m1-BC7. Calculated results for elastic constants
of BC7 and other structures of BC7 are presented in
Table II with the elastic constants of diamond are also
listed for comparison. Elastic modulus of P3m1-BC7,
Pmm2-BC7 and diamond were calculated together
with previous results for this study as also displayed in
Table II. The criteria for mechanical stability of trigonal
symmetry group are derived by [27]:

Cij > 0, i = j = 1÷ 6, (1)

C11 − C12 > 0, (2)

C11C33C44 − C2
14C33 − C2

13C44 > 0, (3)

C11C33 + C12C33 − 2C2
13 > 0, (4)

C44(C11 − C12)− 2C2
14 > 0. (5)

Criteria for mechanical stability of orthorhombic sym-
metry group are derived by [28, 29]:

Cii > 0, i = 1÷ 6, (6)

C11 + C22 + C33 + 2(C12 + C13 + C23) > 0, (7)

C11 + C22 − 2C12 > 0, (8)

C11 + C33 − 2C12 > 0, (9)

C22 + C33 − 2C23 > 0. (10)
Elastic constants meet the requirements from
Eqs. (1)–(5) and Eqs. (6)–(10), respectively, which
indicates that P3m1-BC7 and Pmm2-BC7 are me-
chanically stable. Phonon spectra are calculated at
0 GPa (Ref. [18]) to ensure stability of P3m1-BC7

and Pmm2-BC7. P3m1-BC7 and Pmm2-BC7 exhibit
stability at 0 GPa, as there is no imaginary frequency.
The elastic constants and elastic modulus versus pres-
sure for P3m1-BC7 and Pmm2-BC7 are displayed in
Fig. 3. Among this bulk modulus, P3m1-BC7 retains
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the largest value. The Young modulus E and the
Poisson ratio v are expressed as: E = 9BG/(3B + G),
v = (3B−2G)/[2(3B+G)]. All elastic constants Cij (ex-
cept for C14 and C44) for P3m1-BC7 and elastic modulus
increase with different rates under increasing pressure.
C33 of P3m1-BC7 increases faster than others, and C66

exhibits the slowest growth; however, for Pmm2-BC7,

all elastic constants Cij and elastic modulus increase
under increasing pressure while the difference is C11 of
Pmm2-BC7 increases faster than others, but C66 still
exhibits the slowest growth. Observations of Table II
reveal that the Young modulus of P3m1-BC7 is smaller
than Pmm2-BC7.

TABLE II

Calculated elastic constant Cij , bulk modulus B [GPa], shear modulus G [GPa], the Young modulus E [GPa] and the Poisson
ratio v of BC7 and diamond.

Space
group

C11 C12 C13 C14 C22 C23 C33 C44 C55 C66 B G E v

P3m1 GGAa 828 239 67 -41 828 67 1101 382 382 295 389 361 827 0.146
LDAa 893 183 53 -52 893 53 1010 293 293 355 378 347 797 0.149
GGAb 830 215 53 1099 377 378 368 834 0.133

Pmm2 GGAa 936 10 180 925 152 836 470 460 257 375 383 857 0.119
LDAa 906 -3 162 897 129 803 461 454 258 353 379 937 0.105
GGAb 948 168 975 159 812 493 489 330 377 415 911 0.097

P -43m GGAa 312 419 481 384 52
P -4m2 GGAa 905 88 136 908 424 293 382 382 860 0.125

GGAc 830 166 154 884 500 463
diamond GGAa 1055 122 566 429 520 1111 0.068

LDAa 1100 138 596 459 545 1171 0.075
exp.d 1076 125 577 422

aThis work, bRef [18], cRef [14], dRef [44]

Fig. 3. Elastic constants and elastic modulus of P3m1-
BC7 (a) and Pmm2-BC7 (b) as a function of pressure.

The Poisson ratio v of P3m1-BC7 and Pmm2-BC7

are as follows: vP3m1>vPmm2. The Poisson ratio v
refers to a ductile compound, usually exhibiting a large
v (v>0.26) [30], thus P3m1-BC7 and Pmm2-BC7 are
brittle compounds. The B/G is also consistent with v,
referring to a ductile compound usually exhibiting a large
B/G ratio (B/G > 1.75). Thus if B/G > 1.75, the ma-
terial behaves in a ductile manner [31]. Otherwise, the
material behaves in a brittle manner. The B/G ratio

Fig. 4. (a) the Poisson ratio and B/G of P3m1-BC7

and Pmm2-BC7 as a function of pressure, (b) A1, A2,
A3 of P3m1-BC7 and Pmm2-BC7 as a function of pres-
sure.

of P3m1-BC7 and Pmm2-BC7 at P = 0 GPa are 1.08
and 0.979, respectively, while values of B/G and v for
P3m1-BC7 and Pmm2-BC7 are less than 1.75 and 0.26
at 0 GPa, respectively. This indicates a brittle state.
The B/G of P3m1-BC7 and Pmm2-BC7 as a function
of pressure are presented in Fig. 4a. B/G increases un-
der increasing pressure with B/G = 1.75 at 93.60 GPa
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for P3m1-BC7. The v of P3m1-BC7 and Pmm2-BC7 as
a function of pressure are also depicted in Fig. 4a with v
increases observed with increasing pressure, B/G = 1.75
at 93.60 GPa and v =0.26 at 93.73 GPa for P3m1-BC7.
P3m1-BC7 is found to turn brittle to ductile in this pres-
sure range, while Pmm2-BC7 remains brittle.

Anisotropy of elasticity exerts significant implica-
tions in engineering science and crystal physics, thus
anisotropy of P3m1-BC7 and Pmm2-BC7 is investigated.
Shear anisotropic factors measure a degree of anisotropy
in the bonding between atoms in different planes. The
shear anisotropic factor for {100} shear planes between
〈011〉 and 〈010〉 directions is [32, 33]:

A1 =
4C44

C11 + C33 − 2C13
, (11)

for the {010} shear planes between 〈101〉 and 〈001〉 di-
rections [32, 33];

A2 =
4C55

C22 + C33 − 2C23
, (12)

for the {001} shear planes between 〈110〉 and 〈010〉 di-
rections [32, 33];

A3 =
4C66

C11 + C22 − 2C12
. (13)

The factors A1, A2, and A3 must be one for isotropic
crystal, while any value smaller or greater than one is a
measure of the elastic anisotropy possessed by the crys-
tal. The anisotropy factors of P3m1-BC7 and Pmm2-
BC7 as a function of pressure are displayed in Fig. 4b.
A1 of P3m1-BC7 obviously decreases as C44 decreases
24.84% from 0 GPa to 10 GPa and A1 of P3m1-BC7 de-
creases at P = 10 GPa while A3 of P3m1-BC7 remains
nearly constant. Elastic anisotropic of Pmm2-BC7 is
greater than P3m1-BC7 (Fig. 4b). Generally, the uni-
versal elastic anisotropy index (AU ) is derived from the
B and G of the Voigt and Reuss bounds as the formula
AU = 5(GV /GR) + (BV /BR) − 6. The AU of P3m1-
BC7 and Pmm2-BC7 were calculated as a function with
pressure. AU (P3m1) = 0.269, AU (Pmm2) = 0.300 at
0 GPa, and AU (P3m1) = 0.554, AU (Pmm2) = 0.678
at 100 GPa, respectively. Moderate deviations of the in-
dex from standard value (AU = 0) imply considerable
elastic anisotropy of P3m1-BC7 and Pmm2-BC7 while
elastic properties comparisons indicate that Pmm2-BC7

exhibits slightly higher values in AU .
Utilizing ELAM [34], the calculated Poisson ratio,

shear modulus, and the Young modulus along different
directions, including projections in different planes, may
be obtained in Fig. 5 and Fig. 6. Figure 5a–c displays
the 2D representation of the Poisson ratio in the xy, xz,
and yz planes for P3m1-BC7 and Pmm2-BC7, respec-
tively. Relatively large anisotropy in the Poisson ratio is
found as indicated in the figures. Shear modulus for all
directions of shear strain were also calculated to quan-
tify the anisotropy. 2D representation of shear mod-
ulus in the xy, xz, and yz planes for P3m1-BC7 and
Pmm2-BC7 are displayed in Fig. 5d–f, respectively. The
calculated maximum result of shear modulus for P3m1-

Fig. 5. 2D representation of the Poisson ratio and
shear modulus in the xy plane (a,d), xz plane (b,e) and
yz plane (c,f) for P3m1-BC7 and Pmm2-BC7, respec-
tively.

BC7 and Pmm2-BC7 are 440 GPa and 470 GPa, re-
spectively, while the calculated minimal result of shear
modulus for P3m1-BC7 and Pmm2-BC7 is 279 GPa and
257 GPa, respectively. Ratios Gmax/Gmin(P3m1) = 1.58
and Gmax/Gmin(Pmm2) = 1.83 also indicate Pmm2-
BC7 exhibits a large elastic anisotropy. The directional
dependence of the Young modulus for P3m1-BC7 and
Pmm2-BC7 are presented in Fig. 6a and c, respectively.
Figure 6b and d demonstrates 2D representation of shear
modulus in the xy, xz, and yz planes for P3m1-BC7

and Pmm2-BC7. The 704 GPa < EP3m1 < 1093 GPa,
648 GPa < EPmm2 < 989 GPa, and the average value
of all directions is 876 GPa and 847 GPa for P3m1-BC7

and Pmm2- BC7, respectively. The Young modulus 3D
figure for the P3m1-BC7 exhibits more anisotropic char-
acteristics along the z-axis than that along the x-axis.

3.3. Hardness
The formula for the Knoop hardness [35] (in GPa) was

utilized to calculate hardness Hv:

Hv =
423.8

V
n n

√√√√ n∏
k=1

NkXk e−2.7fk − 3.4, (14)

where V is the volume of the unit cell and Nk is the num-
ber of bonds of the type k in the unit cell. Xk and fk
represent electron-holding energy of the bond k and the
iconicity indicator, defined as in the original work of Li
et al. [36]:
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Fig. 6. The directional dependence of the Young mod-
ulus for P3m1-BC7 (a) and Pmm2-BC7 (c), 2D repre-
sentation of the Young modulus for P3m1-BC7 (b) and
Pmm2-BC7 (d).

Xk =

√
χk
i χ

k
j

CNk
i CN

k
j

, (15)

fk =

∣∣χk
i − χk

j

∣∣
4
√
χk
i χ

k
j

, (16)

χk
i , χ

k
j denote the electronegativity of atoms i, j in bonds.

CNk
i , CN

k
j are the coordination numbers of atoms i and

j. Bond valence (s) is computed utilizing the classical
Brown bond valence model [37]:

ski =
vi exp(−∆k/0.37)∑
k′ exp(−∆k′/0.37)

. (17)

Denoted by n are the number of different bond types in
the unit cell, as labeled with the index k = [1÷ n]. The
model [36] computes the electronegativity of each i-th
atom as χ = 0.481ni/Ri where ni and Ri represent the
number of valence electrons and univalent covalent radius
of the atom, respectively. The sum applies to all bonds
k′ where atom i participates, and ∆ represents deviation
from reference covalent bond length. The definition sat-
isfies the sum rule exactly:∑

k′

sk
′

i = vi. (18)

Use of the multicolor graph theory is the most defin-
ing feature of the Lyakhov–Oganov approach, i.e. bond
topology is utilized, in addition to bond strengths, for
computing hardness. The weak bonds for molecular,
chain and layered structures, defining crystal hardness,
also maintain three dimensionality.

The output file contains the following information:
length symbolizes bond modulus, Delta (∆) is a devi-
ation from bond length defined by the reference uni-
valent covalent radius, Nk is number of type k bonds
in the unit cell, and si and sj represent bond valence.

TABLE III
Calculated hardness of BC7 and diamond.

bond length ∆k Nk si sj Xk e−2.7f
k Hv

P3m1 B-C 1.607 0.007 4 0.750 0.970 1.571
C-C 1.473 -0.047 1 1.167 1.098 0.739
C-C 1.543 0.023 11 1.005 0.982 6.809 51.4

Pmm2 B-C 1.611 0.011 4 0.750 0.996 1.589
C-C 1.538 0.018 12 1.001 1.000 7.508 59.8

P -4m2 B-C 1.648 0.048 4 0.956 0.750 1.524
C-C 1.546 0.026 12 1.010 1.005 7.518 56.8

P -43m B-C 1.601 0.001 4 1.072 0.750 1.658
C-C 1.556 0.036 12 0.996 0.980 7.329 58.9

diamond C-C 1.544 0.024 16 1.000 1.000 9.966 89.7,91.2a, 90b

aRef [35], bExp., Ref [38]

Calculated hardness of P3m1-BC7, Pmm2-BC7, P -4m2-
BC7, P -43m-BC7 and diamond via the approach is listed
in Table III. The calculated hardness of diamond is
89.7 GPa, in alignment with the reported experimen-
tal result (90 GPa [38]). Pmm2-BC7 retains superior
hardness over other BC7 in the BC7 system with or-
der of hardness (for the considered BC7 compounds) as
Pmm2 > P -43m > P -4m2 > P3m1.

3.4. Thermodynamic properties

Thermodynamic properties of solids at high pressure
and at high temperature are noteworthy, within con-
densed matter physics. Thermodynamics calculations
are necessary to acquire the corresponding properties
as functions of temperature and pressure in terms of
the quasi-harmonic Debye model [39–43], as applied to
estimate thermodynamic properties of various materi-
als [29, 43]. The coefficient of thermal expansion α
demonstrates the relationship between object size and
temperature change. The coefficients of thermal expan-
sion for P3m1-BC7 and Pmm2-BC7 are plotted as a
function of pressure and temperature (Fig. 7a and b)
and are found to increase with increase of temperature
and decrease of pressure. Additionally, the coefficient of
thermal expansion versus pressure exhibits a near lin-
ear relation at a given lower temperature (T < 500 K).
Two-dimensional contour plots of the Grüneisen param-
eter γ, versus pressure and temperature for P3m1-BC7

and Pmm2-BC7 are displayed in both Fig. 7c and d. The
Grüneisen parameter γ describes the effect on vibrational
properties of changing the crystal lattice volume and, as
a consequence, the effect of changing temperature on the
size or dynamics of the lattice. Effect of the temperature
T on the coefficient of thermal expansion is more signif-
icant than pressure P (Fig. 7), and in contrast with the
Grüneisen parameter effect, pressure P is greater.

Two-dimensional contour plots illustrating dependence
of the Debye temperature on pressure and temperature
for P3m1-BC7 and Pmm2-BC7 are displayed in Fig. 8.
The Deybe temperature is affected by both pressure and
temperature and the effect of increase of temperature on
P3m1-BC7 and Pmm2-BC7 is the same as decrease of
pressure. The Debye temperature decreases quickly at a
given temperature with increase of pressure and typically,
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Fig. 7. Two-dimensional contour plots of coefficient
of thermal expansion and Grüneisen parameter versus
pressure and temperature for P3m1-BC7 (a, c) and
Pmm2-BC7 (b, d).

the higher Debye temperature, the greater material mi-
crohardness. The resulting Debye temperature is 1797 K
and 1878 K for P3m1-BC7 and Pmm2-BC7, which aligns
with the previous description.

Heat capacity, or thermal capacity, is a measurable
physical quantity equal to the ratio of heat added to (or
subtracted from) an object to the resulting temperature
change. The two-dimensional contour plots indicating
dependence of heat capacity on pressure and temperature
for P3m1-BC7 and Pmm2-BC7 are displayed in Fig. 9,
with heat capacity as a function of temperature at var-
ious pressures. Heat capacity at constant pressure (CP )
and at constant volume (CV ) follows the law of T 3 as ex-
pected in the range from 0 K to 800 K, considered as low
temperatures with respect to the large Debye tempera-
ture of P3m1-BC7 and Pmm2-BC7. CV and CP then
expand with increase of temperature at a given pressure
and decrease with increase of pressure at a given temper-
ature. The CV of P3m1-BC7 and Pmm2-BC7 increases
slowly at high temperature up to 1600 K, due to the high
Debye temperature, they tend to achieve limitations in
accordance with the Dulong–Petit law.

Fig. 8. Two-dimensional contour plots of the Debye
temperature versus pressure and temperature for P3m1-
BC7 (a) and Pmm2-BC7 (b).

Fig. 9. Calculated specific volume CV and pressure
heat capacity CP as a function of pressure for P3m1-
BC7 and Pmm2-BC7 at different temperature: CP con-
tours (a, e), CP –T (b, f), CV contours (c, g), and CV –
T (d, i), respectively.

4. Conclusions

A detailed investigation of the structural, elastic, and
anisotropic properties of P3m1-BC7 and Pmm2-BC7

utilizing the DFT within the ultrasoft pseudopotential
scheme in the frame of GGA and LDA was conducted
in this study. The elastic anisotropy of P3m1-BC7 and
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Pmm2-BC7 are discussed in detail under pressure from
0 GPa to 100 GPa. The calculated Pugh modulus ratio
(B/G) and the Poisson ratio indicate transition of P3m1-
BC7 from brittle to ductile at approximately 93.68 GPa.
The A1, A2, A3, AU , the shear modulus, the Young mod-
ulus, and the Poisson ratio for P3m1-BC7 and Pmm2-
BC7 reveal that Pmm2-BC7 exhibits a larger elastic
anisotropy than P3m1-BC7. Thermodynamic properties
of P3m1-BC7 and Pmm2-BC7, including the Debye tem-
perature, heat capacity, and thermal expansion and the
Grüneisen parameters are researched through application
of the quasi-harmonic Debye model.
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