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Different approaches to quantum gravity proposal such as string theory, doubly special relativity, and also

black holes physics, all commonly address the existence of a minimal measurable length of the order of the Planck
length. One way to apply the minimal length is changing the Heisenberg algebra in the phase space which is
known as the generalized uncertainty principle. It is essential to apply this feature on the statistical mechanics of
many body systems in the presence of a measurable minimal length scale in order to see the roles of this natural
cutoff on physical phenomena. In this paper, some details of statistical mechanics of many body systems that
have not been studied carefully in literature are studied in the presence of minimal length scale. The issues such
as isomerization, the Liouville theorem, virial theorem and equipartition theorem are studied in this setup with
details and the results are explained thoroughly.
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1. Introduction

A common feature of all existing approaches to quan-
tum gravity is the existence of a minimal measurable
length of the order of the Planck length [1–10]. This
minimal length scale imposes limitation on the complete
resolution of spacetime adjacent points in high energy
regime and gives a fuzzy structure to spacetime mani-
fold. A direct consequence of this minimal measurable
length is discreteness of space at quantum gravity level.
An interesting property of a minimal measurable length
is correcting the relations between position and momen-
tum operators in ordinary quantum mechanics, the result
of which is called the generalized (gravitational) uncer-
tainty principle (GUP) [11].

The simplest form of such relations can be written in
one-dimensional form as

∆x∆p ≥ ~
2

(
1 + β (∆p)

2
+ γ
)
, (1)

where β and γ are positive quantities which are inde-
pendent of ∆x and ∆p, but may in general depend on
the expectation values 〈x〉 and 〈p〉. The usual Heisen-
berg uncertainty relation can be recovered in the limit
of β = γ = 0. It is easy to see that this relation im-
plies a minimal position uncertainty as (∆x)min = ~

√
β.

As a result, there is a minimal measurable length scale
in measurement of position of a test particle and also
probing spacetime structure. For a more general discus-
sion on such a deformed Heisenberg algebras, especially
in three dimensions, see [8, 12]. Now, it is possible to re-
alize Eq. (1) from the following relation between position
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and momentum operators:
X = x, P = p(1 + βp2), (2)

where p2 = pipi and we take γ = β〈p〉2. So we find
x̂i, p̂j ] = i~

(
1 + βp2

)
δij , [p̂i, p̂j ] = 0, (3)

where a hat marks operator character of the quantity.
The commutation relations for the coordinates are ob-
tained as

[x̂i, x̂j ] = 2i~β (p̂ix̂j − x̂ip̂j) , (4)
which means that in more than one dimension, GUP
naturally implies a non-commutative geometric general-
ization of the ordinary position space. In a statistical
mechanics point of view, the microstates of a given clas-
sical system may be defined by 3N position coordinates
x1, . . . , x3N and 3N momenta p1, . . . , p3N , whereN is the
number of particles in the system. In a geometric picture,
the set of coordinates (xipj), where i = 1, . . . , 3N , may
be considered as a point in a 6N -dimensional space, the
so-called phase space of the system. Since the coordi-
nates xi and pi are varying with time, the dynamics of
the whole system can be determined by using the Hamil-
tonian equations of motion for each of these coordinates
as follows:

ẋi = {xi, H} = {xi, pj}
∂H

∂pi
+ {xi, xj}

∂H

∂xj
,

ṗi = {pi, H} = −{xj , pi}
∂H

∂xj
, (5)

where H (xi, pj) is the Hamiltonian of the system. We
note that we have not included the Poisson bracket of
pi and pj since we assume that the modified momentum
still commutes.

Over the past few years, a number of research works
have been devoted to the area of statistical mechanics
in the GUP framework [13]. For instance, the ther-
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modynamics of the ideal gas and ultra-relativistic gas
in micro-canonical ensemble in the GUP framework are
studied in [14]. For harmonic oscillators and ideal gases
in canonical ensembles with GUP see [15]. The de-
formed density matrix is studied in [16] and modified
uncertainty relations for inverse temperature and inter-
nal energy are addressed in [17]. Black body radiation
with minimal length effects is considered in [18]. As
usual, the microstates of any physical system are de-
termined by quantum mechanics and the corresponding
energy levels should be obtained from the Schrödinger
equation [19]. In the GUP framework, the Schrödinger
equation becomes a non-linear or higher order differential
equation and it is not easy to solve it analytically in gen-
eral. For example, for the wave function and energy spec-
trum of harmonic oscillator see [20] and [21]. A partic-
ular non-linear Schrödinger equation in GUP framework
is proposed in [22, 23]. For the higher order modified
Schrödinger equation for quantum mechanical systems,
see [24]. In the GUP framework, the commutation rela-
tions take the following forms:
{xi, xj} = 2β (pixj − pjxi) ,

{xi, pj} =
(
1 + βp2

)
δij , {pi, pj} = 0. (6)

According to the Darboux theorem [25], it is always pos-
sible to find canonically conjugate variables xi (x, p) and
pi (x, p) such that they satisfy the commutation rela-
tions (6). With these preliminaries, now we are in a po-
sition that we can focus on some statistical issues related
to many-body systems in the presence of a natural cutoff
as a minimal measurable length encoded in GUP.

2. Isomerization theorem with minimal length

We restrict our attention to equations just up to the
first order in GUP parameter, β. First of all, we consider
the expectation value of the quantity xi∇

(
1− β∇2

)
·H

in the presence of the minimal measurable length in GUP.
Note that we prefer to compute the statistical average of
this quantity since this average is more conclusive on sta-
tistical ground than the usual form of this operator. In
which follows, H(q, p) is the Hamiltonian of the system
where xi and xj are formally each of the 6N generalized
phase space coordinates as (q, p). In our canonical en-
semble and up to first order in β we have〈

xi∇
(
1− β∇2

)
·H
〉

=

〈
xi
∂H

∂xj
− βxi

∂3H

∂x3j

〉
=

∫ (
xi
∂H

∂xj
− βxi

∂3H

∂x3j

)
e−γH dw

/∫
e−γH dw.

The integral in the numerator can be calculated by inte-
gration on xj to find∫ (

xi
∂H

∂xj
− βxi

∂3H

∂x3j
e−γH

)
dw =

∫ (
1

γ
− β 1

γ3

)
δij e−Hγ dw.

The coefficient ∂xi

∂xj
in the remaining integral equals with

δij comes out of the integral and we find〈
xi
∂H

∂xj
− βxi

∂3H

∂x3j

〉
=

∫ (
xi
∂H

∂xj
− βxi

∂3H

∂x3j

)
e−γH dw

/∫
e−γH dw =

∫ (
1

γ
δij − β

1

γ3
δij

)
e−γH dw

/∫
e−γH dw =(

1

γ
δij − β

1

γ3
δij

)
.

Therefore we find〈
xi
∂H

∂xj
− βxi

∂3H

∂x3j

〉
=

(
1

γ
− β 1

γ3

)
δij =

[
kT
(

1− β (kT )
2
)]
δij . (7)

The second term in the right hand side with coefficient
β is a term that has been emerged in the presence of the
minimal measurable length encoded in GUP. Note that
the standard result can be recovered easily in the limit of
β → 0. In the particular case with xi = xj = pi, Eq. (7)
turns out to the following form:〈

pi
∂H

∂pj
− βpi

∂3H

∂p3j

〉
= kT

(
1− β (kT )

2
)

While the equation for xi = xj = qi will be as follows:〈
qi
∂H

∂qj
− βqi

∂3H

∂q3j

〉
= kT

(
1− β (kT )

2
)
.

Summing over all i, from i = 1, . . . , 3N , we get
3N∑
i=1

〈
pi
∂H

∂pj
− βpi

∂3H

∂p3j

〉
= 3NkT

(
1− β (kT )

2
)
, (8)

3N∑
i=1

〈
qi
∂H

∂qj
− βqi

∂3H

∂q3j

〉
= 3NkT

(
1− β (kT )

2
)
. (9)

In several interesting physical problems, the Hamilto-
nian is a quadratic function of the coordinates. So, it can
be written by a canonical transformation as follows:

H =
∑
j

Ajp
2
j +

∑
j

BjQ
2
j , (10)

where pj and Qj are conjugate canonical variables while
Aj and Bj are specific constants of the problem. For such
a system, we obviously have∑

j

(
pj
∂H

∂pj
− βpj

∂3H

∂p3j
+ qj

∂H

∂qj
− βqj

∂3H

∂q3j

)
= 2H,

(11)
where H is the GUP-deformed Hamiltonian of the sys-
tem. Regarding the Eqs. (8) and (9) we get

〈H〉 =
1

2
fkT

[
1− β (kT )

2
]
, (12)

where f is the number of non-zero coefficients. There-
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fore, it can be concluded that the GUP-deformation
of the generalized Hamiltonian via the expression
1
2kT

[
1− β (kT )

2
]
has a particular role in the internal

energy of the statistical mechanical system and hence to
the specific heat of the system. This is the isomeriza-
tion theorem in the presence of the minimum measurable
length scale.

We note that since we are working up to first order in β,
then it is expected that our analysis is supplemented by
a limiting temperature at which these results are reliable.
In fact the approximation β (kT )

2 � 1 is a good assump-
tion in high energy regime governed by GUP. Without
such an approximation, values such as the average en-
ergy given by (12) can become zero or even negative.
The best current limit on beta gives a limit on tempera-
ture of the order of the Planck temperature, 1032 K. We
note also that in the doubly special relativity there is a
maximal energy (momentum) for a test particle on the
order of the Planck energy (Planck momentum) that re-
sults in accordingly a maximal temperature of the order
of the Planck temperature.

3. Virial theorem with minimal length
The virial theorem states that, for a stable, self-

gravitating, spherical distribution of equal mass objects
(stars, galaxies, etc.), the total kinetic energy of the ob-
jects is equal to minus 1/2 times the total gravitational
potential energy. In other words, the potential energy
must be equal the kinetic energy with a factor of two.

In general, the expectation value of the sum of the
products of the coordinates of the various particles in
the system and the respective forces acting on them is
referred to as the virial of the system. Using the rela-
tions (5) and (9), the following relation can be obtained:

3N∑
i=1

〈
qi
∂H

∂qj
− βqi

∂3H

∂q3j

〉
= 3NkT

[
1− β (kT )

2
]
,

3N∑
i=1

〈
qi
−ṗ
{qi, pi}

− βqi
∂2

∂q2i

−ṗ
{qi, pi}

〉
=

3NkT
[
1− β (kT )

2
]
,

3N∑
i=1

〈
qi
−ṗ

1 + βp2
− βqi

∂2

∂q2i

−ṗ
1 + βp2

〉
=

3NkT
[
1− β (kT )

2
]
,

−
3N∑
i=1

1

1 + βp2

〈
qiṗ− βqi

∂2

∂q2i
(qiṗ)

〉
=

3NkT
(

1− β (kT )
2
)
.

Therefore we find
v{(GUP )} = −3NkT

[
+βp2 − β (kT )

2
]
. (13)

This is the virial of a system in the presence of natural
cutoff as a minimal measurable length. The terms con-
taining β are the corrections due to quantum gravity ef-
fect via existence of a minimal length scale. One recovers
the standard result by putting β = 0. This equation can

be applied to a classical gas of non-interacting particles.
In this case the only forces that acts on particles is the
force which originates from the presence of the walls of
the container. These forces can be exerted by an external
pressure P , which is limited by the walls of the container.
This, the so called pds-force, depends on the element of
the surface ds, where the negative sign emerges since the
force is inward while the normal to the container area is
outward. In this case we have

v0 =

(∑
i

qiFi

)
0

= −P
∮
s

r · ds = −P
∮
V

(∇ · r) dV

In writing this relation the divergence theorem has been
utilized. Considering the effects of quantum gravity vial
the GUP, we find

v{GUP} = −P
∫
V

∇
(
1− β∇2

)
· rdV =

−P
∫
V

(
1− β∇2

)
∇ · rdV = −3PV.

So we find
v{GUP} = −3PV. (14)

Comparing (14) and (13), the following result is obtained
up to the first order in β:

pV = NkT
[
1 + βp2 − β (kT )

2
]
. (15)

This equation, which can be written as

p = p (V,N, T ) =
NkT

V

(
1 + βp2 − β (kT )

2
)

in order to resemble the Van der Waals form, is the
equation of state of ideal gases in the phenomenologi-
cal quantum gravity framework with a minimal length
cutoff scale. The standard equation of state is recovered
by setting β = 0. The internal energy of the gas, with
the theorem of isomerization (12), is given as follows:

〈H〉 =
3

2
NkT

(
1− β (kT )

2
)
. (16)

3N is the number of degrees of freedom. As it is known,
this energy is not the average kinetic energy of the sys-
tem. Comparing this relation with relation (13) the fol-
lowing important result can be deduced:

v{GUP} = −
(
1 + βp2

)
〈H〉 . (17)

As usual, the β-dependent term has its origin in fact
in the quantum gravity. Once again we note that we
have performed our calculations up to the first order of
the GUP parameter. It is important to emphasize also
that the idea of minimal length has its origin in quan-
tum gravity and here we have presented a toy model to
see how this minimal length scale affects statistical me-
chanics of many-body systems at high temperature. At
this point we note that the issue of composite system
in a deformed space with minimal length has been stud-
ied by [26]. Following this seminal work, here we have
studied some other statistical features of these composite
systems. Naturally our results could be consistent with
their results and this is actually the case. We refer also
to [27] for another study on minimal length physics.
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4. Summary and conclusions
In this paper we have presented a toy model to study

the effects of a minimal length scale on some important
aspects of statistical mechanics of many-body systems.
The origin of such a minimal length cutoff lies in quantum
gravitational effect and is a common feature in all exist-
ing approaches to quantum gravity. Then, the issue of
isomerization theorem is reconsidered in the presence of
the minimal length cutoff. By calculating the expectation
value of the Hamiltonian, we have shown that the inter-
nal energy of a statistical system changes in the presence
of this natural cutoff. In this regard, since the internal
energy and the specific heat CV are related quantities, we
have shown that in the presence of the minimal measur-
able length the specific heat reduces due to the deformed
algebra in the presence of the natural cutoff as the min-
imal length. This is related in essence to the reduction
of the number of accessible microstates in the presence
of the minimal length. This reduction is actually due to
increment of the volume of the fundamental cell in phase
space in comparison to the standard case.

We have studied also the issue of virial theorem in this
setup. We have shown that this theorem gets modified
considerably in this setup. In this manner, we have de-
rived the modified equation of state of an ideal gas in
the deformed space up to first order in the GUP param-
eter, β. The Liouville theorem is studied in the presence
of natural cutoff as the minimal length and the deforma-
tion has been explained physically. We should stress here
that this phenomenological implications that are shown
themselves as correction terms in high energy (the Planck
scale) regime, can be tested essentially in laboratory in
future. These achievements provide direct test of quan-
tum gravity but their detection needs very high energy
accelerators. The counterparts of these effects in rela-
tivistic limit can be tested via ultra-high energy cosmic
rays, too. In fact, existence of a natural cutoff as a mini-
mal length modifies also the standard relativistic disper-
sion relation. It is possible to see the effect of this natural
cutoff in ultra-high energy cosmic rays as a natural labo-
ratory with energy on the scale of the Planck energy. In
this respect, we refer the interested reader to the issue of
GZK limit and also the Lorentz invariance violation in
ultra-high energy cosmic rays experiments [28–30].
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