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One-Dimensional Tasaki–Hubbard Model in Paramagnetic
Limit
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The one-dimensional Tasaki–Hubbard model belongs to the class of flat-band ferromagnets. By introducing an
infinitesimally small external magnetic field, we examine the properties of the model in the paramagnetic regime.
We compare and contrast them to the properties of the conventional Curie paramagnet.
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1. Introduction

In 1992 H. Tasaki considered the standard (repulsive)
one-orbital Hubbard model with the Hamiltonian

H =
∑
σ=↑,↓

H0,σ +HU ,

H0,σ =
∑
(ij)

tij

(
c†i,σcj,σ + c†j,σci,σ

)
, tij > 0,

HU = U
∑
i

ni,↑ni,↓, U > 0 (1)

on the so-called decorated lattices which support a com-
pletely dispersionless (flat) lowest-energy one-electron
band [1]. In one dimension the introduced lattice is
also known as the sawtooth chain or the ∆-chain with a
special relation between the hopping integrals along the
straight line t1 and the zigzag path t2: t2 =

√
2t1 > 0,

see Fig. 1. It is well known [1] that the ground state
of the model is the fully polarized (i.e., saturated) fer-
romagnetic state, i.e., 〈S2〉n,N = (n/2)[(n/2) + 1], if
the number of electrons n equals N = N/2 or N − 1.
For smaller numbers of electrons, 1 < n < N − 1, we
have 0 < 〈S2〉n,N < (n/2)[(n/2) + 1] (nonsaturated fer-

Fig. 1. One-dimensional Tasaki lattice. Here t2 =√
2t1 > 0.
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romagnetism). Furthermore, limN→∞〈S2〉n,N /n2 = 0,
if n/N < 1/2. In other words, thermodynamically
large systems exhibit ground-state ferromagnetism for
n/N = 1/2 but are paramagnetic for 0 < n/N < 1/2.

The Mielke–Tasaki mechanism for the ground-state
ferromagnetism can be explained as follows [1–5]. N
states from the lowest-energy flat band with the energy
ε1 = −2t1 can be visualized as localized within a V-
shaped part of the chain (trapping cell), i.e., the flat-band
states are given by l†m,σ|0〉, l†m,σ = c†m−1,2,σ −

√
2c†m,1,σ +

c†m,2,σ, m = 1, . . . ,N , see Fig. 1. Neighboring traps have
common sites (the sites m, 2, m = 1, . . . ,N , see Fig. 1).
The ground states for 1 < n < N − 1 electrons con-
sist of sets of independent clusters, where each cluster
is built by connected occupied traps with electrons in
the symmetric spin state (ferromagnetic cluster). The
many-electron ground-state states of H (1) constructed
this way do not feel the Hubbard repulsion U > 0 and
belong at the same time to the ground-state manifold
of the noninteracting system with the energy nε1. For
n = N and n = N −1 no isolated clusters exist, i.e., only
a single ferromagnetic cluster can be constructed. There-
fore the ground state is ferromagnetic with the maximal
value of 〈S2〉n,N . For smaller 1 < n < N − 1 isolated
clusters can appear and 〈S2〉n,N is less than its maximal
value S2

max = (n/2)[(n/2) + 1].

Furthermore, one can calculate the number of the
ground states, i.e., the ground-state degeneracy [5–7].
By mapping the ground states of n < N electrons of
the N -site Tasaki chain onto the spatial configurations
of n hard dimers on a 2N -site simple chain [6] one can
find the ground-state degeneracy gN (n):
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gN (n) =
2N

2N − n
Cn2N−n. (2)

Bearing in mind that the canonical partition function
of n electrons on the Tasaki chain of volume N = N/2
cells is Z(T, n,N ) = gN (n)e−nε1/T , we immediately get
from Eq. (2) the Helmholtz free energy F (T, n,N ) =
−T lnZ(T, n,N ),

F (T, n,N ) = −NT ln
(2− p)2−p

pp(2− 2p)2−2p
+ nε1, (3)

where p = n/N is the electron density. Alternatively,
one can calculate the grand-canonical partition func-
tion [6, 7]:

Ξ(T, µ,N ) =

(
1
2

+

√
1
4

+ e
µ−ε1
T

)2N

(4)

and the grand thermodynamical potential

Ω(T, µ,N ) = −2NT ln

(
1
2

+

√
1
4

+ e
µ−ε1
T

)
. (5)

The thermodynamic functions in Eq. (3) and Eq. (5) are
related by the Legendre transformation F = Ω+µn after
eliminating µ in the right-hand side (r.h.s.) of this equa-
tion using the relation n = −∂Ω/∂µ. Formulae (3) or
(5) give the contribution of the highly degenerate ground-
state manifold to thermodynamics of the considered Hub-
bard model. This contribution dominates for 0 ≤ p ≤ 1
or for µ ≈ ε1 in the low-temperature regime [5–7].

In the present paper, we wish to extend the previous
investigations [6, 7] switching on an infinitesimally small
external magnetic field h > 0 †, i.e., the field is nonzero
but it presents the smallest energy scale in the problem.
We are interested in the case 1 ≤ n < N − 1, that is the
case which yields paramagnetism in the thermodynamic
limit n → ∞, N → ∞, 0 < p = n/N < 1. Our aim is
to study the peculiarities of the one-dimensional Tasaki–
Hubbard paramagnet compared to the conventional spin-
1/2 Curie paramagnet. These peculiarities arise (i) from
the degeneracy of the ground-state manifold, (ii) from the
larger size of the individual magnetic moments (which
are proportional to the size of the isolated ferromagnetic
clusters), and (iii) from the distribution of the size of the
ferromagnetic clusters. For completeness, we give here
the Helmholtz free energy of the spin-1/2 Curie param-
agnet

fC(T, h) = −T ln
sinh h

T

sinh h
2T

= −T ln

(
2 cosh

h

2T

)
. (6)

To this end, we consider finite chains consisting of N =
12, 16, 20, 24 sites. After characterizing the ground-state
manifold for various numbers of electrons n = 1, . . . , N/2,
we calculate the canonical partition functions and ther-
modynamic quantities. We compare the results with the
case h = 0, discuss the 1/N → 0 limit, and contrast the
results for the Tasaki–Hubbard and Curie paramagnets.

†Here h = gµBH, where H [T] is the magnetic field, µB ≈
0.67171 K/T is the Bohr magneton, and g is the electron g-factor.

The discussion of finite chains allows also to check the ob-
tained analytical results (obtained by taking into account
only the flat-band cluster states) by comparing them with
exact-diagonalization data for the full Hubbard model
(i.e., taking into account all eigenstates) for chains of
N = 16 sites (finite U) and N = 24 sites (U →∞).

2. Results

In what follows we consider the canonical description
for finite chains with N = 6, 8, 10, 12 trapping cells.
Note that in previous papers [5–7] on model (1) the focus
was on grand-canonical description. In the presence of
magnetic field the formula for Z(T, n,N ) must be mod-
ified. Consider, for example, the case n = 4 and N = 6.
According to Eq. (2) for h = 0 we get g6(4) = 105, and
therefore Z(T, 4, 6) = 105e−4ε1/T . The ground-state de-
generacy 105 comes from 6 spatial single-cluster config-
urations (each spatial configuration has degeneracy 5),
6 spatial configurations “3-site cluster + 1-site cluster”
(each spatial configuration has degeneracy 8), and 3 spa-
tial configurations “2-site cluster + 2-site cluster” (each
spatial configuration has degeneracy 9). If h > 0 the
mentioned states have different energies resulting in the
new formula for Z(T, h, 4, 6):

Z(T, h, 4, 6) = e−
4ε1
T

×
[
6
(

e
2h
T + e

h
T + 1 + e−

h
T + e−

2h
T

)
+6
(

e
3h
2T + e

h
2T + e−

h
2T + e−

3h
2T

)(
e
h
2T + e−

h
2T

)
+3
(

e
h
T + 1 + e−

h
T

)2 ]
. (7)

The calculation of the Helmholtz free energy per electron
fTH(T, h, p) = −T lnZ(T, h, n,N )/n and of other ther-
modynamic quantities is straightforward now and can be
done using a software for analytical calculations.

Our results are reported in Figs. 2–6. The tempera-
ture dependence of the entropy and of the specific heat
are presented in Figs. 2 and 3, respectively. For zero
field, h = 0, we know [5–7] that the huge ground-
state degeneracy leads to a nonzero residual entropy, i.e.,
S(T, h = 0, n,N )/n = [ln gN (n)]/n 6= 0, as well as a
vanishing specific heat, i.e., C(T, h = 0, n,N ) = 0. By
switching on h the degeneracy of the ground-state man-
ifold is partly lifted, however, the degeneracy remains
huge such that a nonzero residual entropy (although re-
duced) survives, see Fig. 2. Trivially, for the ordinary
Curie paramagnet the ground state at h > 0 is the sin-
gle ferromagnetic state, i.e., there is no residual entropy.
The finite-size dependence sketched in the lower part of
Fig. 2 gives evidence that the residual entropy is present
for N →∞.

The specific heat at nonzero h shows already a nontriv-
ial dependence on temperature and agrees with exact-
diagonalization data for model (1) at low temperatures,
see Fig. 3. Moreover, finite size-effects are small (results
for N = 6, 8, 10, 12 almost coincide). As p increases, de-
viations from the Curie-paramagnet case become more



1258 V. Baliha, J. Richter, O. Derzhko

Fig. 2. Upper part: temperature dependence of the en-
tropy per electron s(T, h, p) for h = 0.001 and p = 1/4,
p = 1/2, and p = 3/4. The results for N = 6, 8, 10, 12
cells are shown by dotted, short-dashed, long-dashed,
solid curves, respectively. The bold magenta curve
corresponds to the Curie paramagnet. Lower part:
dependence of the residual entropy per cell S(T =
0, h, n,N )/N on 1/N for h = 0 (thin curves) and
h > 0 (thick curves)for electron concentrations p = 1/4,
p = 1/2, and p = 3/4. Note that the thick red and green
curves coincide. The results in the thermodynamic limit
for h = 0 are shown by symbols on the ordinate axis (i.e.,
at 1/N = 0).

pronounced (peak becomes lower and broader) and
C(T, h, n,N ) → 0, when p → 1. This indicates that
less excited states are accessible in the Tasaki–Hubbard
system.

The low-temperature magnetization curves in Fig. 4
show that it is easier to magnetize the Tasaki–Hubbard
paramagnet with p > 0 than the Curie paramagnet, i.e.,
the Tasaki–Hubbard paramagnet shares properties with
a superparamagnet. This is in agreement with results for
the initial (zero-field) susceptibility shown in Fig. 5.

Finally, we discuss the ground-state magnetic proper-
ties of the Tasaki–Hubbard paramagnet at h = 0. To

Fig. 3. Temperature dependence of the specific heat
per electron c(T, h, p) for h = 0.001 and p = 1/4,
p = 1/2, and p = 3/4. The results for N = 6, 8, 10, 12
cells are shown by dotted, short-dashed, long-dashed,
solid curves, respectively. The bold magenta curve cor-
responds to the Curie paramagnet. By symbols we show
exact-diagonalization data for the Hubbard model (1)
with U = 4, N = 16, n = 4 (◦) and U → ∞, N = 24,
n = 3 (∆).

Fig. 4. Field dependence of the magnetization per elec-
tron m(T, h, p) for T = 0.001 and p = 1/4, p = 1/2, and
p = 3/4. The results forN = 6, 8, 10, 12 cells are shown
by dotted, short-dashed, long-dashed, solid curves, re-
spectively. The bold magenta curve corresponds to the
Curie paramagnet.

this end, we calculate the average square of the total
spin 〈S2〉n,N [7, 8] The direct way to get 〈S2〉n,N is to
use its definition. For the considered example n = 4,
N = 6, in 30 states S2 has the value 6, in 48 states S2

has the value 9/2, and in 27 states S2 has the value 4.
Therefore 〈S2〉4,6 = 24/5. An alternative way to get
〈S2〉n,N is to calculate first the (normalized) number
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Fig. 5. Temperature dependence of the susceptibility
per electron χ(T, h, p) multiplied by T for h = 0 and
p = 1/4, p = 1/2, and p = 3/4. The results for
N = 6, 8, 10, 12 cells are shown by dotted, short-
dashed, long-dashed, solid curves, respectively. The
bold magenta curve corresponds to the Curie param-
agnet. By symbols we show exact-diagonalization data
for the Hubbard model (1) with U = 4, N = 16, n = 4
(◦) and U →∞, N = 24, n = 3 (∆).

of clusters with l electrons, n(l), and then to sum up∑n
l=1 n(l)(l/2)[(l/2) + 1], see Ref. [8]. For the considered

example, n(1) = 48/105, n(2) = 54/105, n(3) = 48/105,
and n(4) = 30/105 resulting again in 〈S2〉4,6 = 24/5.
The latter approach is convenient in the percolation
setup, since the cluster-size distribution n(l) can be ob-
tained either analytically or numerically. Thus, in the
one-dimensional case, 〈S2〉n,N /N = 3p(2− p)/[8(1− p)]
in the thermodynamic limit [8]. A third possibility to get
〈S2〉n,N is to exploit the Curie law for the temperature
dependence of the initial susceptibility, χ(T, h = 0) =
C/T , since for Curie constant holds C = 〈S2〉n,N /3. Us-
ing the latter approach we arrive at

〈S2〉n,N = 3T 2 ∂
2 lnZ(T, h, n,N )

∂h2

∣∣∣∣
h=0

. (8)

In Table I we collect our findings for 〈S2〉n,N , n =
1, . . . ,N − 1 which coincide with the ones for N = 6, 8
presented earlier in Ref. [7]. In Fig. 6 we show the
results for 〈S2〉n,N obtained by Eq. (8) demonstrating
that (i) ferromagnetism disappears for 0 < p < 1 as
N increases (main part) and (ii) 〈S2〉n,N /N approaches
3p(2− p)/[8(1− p)] (bold black curve) [8] as N increases
(inset).

3. Conclusions

To summarize, in the present study we have extended
the analysis of Refs. [6, 7] for the Tasaki–Hubbard
chain. We switch on an infinitesimally small external
magnetic field and show how previous findings become
modified. At small electron densities the system is a

Fig. 6. Main part: dependence of the averaged (over
ground states) total spin squared 〈S2〉n,N per its maxi-
mal value S2

max = (n/2)[(n/2) + 1] on the electron den-
sity p. The results for N = 6, 8, 10, 12 cells are shown
by dotted, short-dashed, long-dashed, solid curves, re-
spectively. Inset: dependence of the averaged (over
ground states) total spin squared 〈S2〉n,N per cell on the
electron density p. The bold black curve corresponds to
the N → ∞ result obtained in Ref. [8], see the main
text of the paper.

TABLE I

Values of 〈S2〉n,N for Tasaki chains with different number
of electrons and cells as they follow from Eq. (8).

n 1 2 3 4 5 6 7 8 9 10 11
N = 6 3

4
5
3

81
28

24
5

35
4

N = 8 3
4

21
13

117
44

4 165
28

9 63
4

N = 10 3
4

27
17

51
20

48
13

225
44

7 39
4

72
5

99
4

N = 12 3
4

11
7

189
76

60
17

19
4

81
13

357
44

32
3

405
28

21 143
4

paramagnet. However, it differs from the conventional
Curie paramagnet, rather it resembles a superparamag-
net with a huge degeneracy of the ground state and a
size-distribution of the ferromagnetic clusters. Compar-
ison to exact-diagonalization data shows that the elab-
orated approach is appropriate for description of the
low-temperature properties of the Tasaki–Hubbard-chain
paramagnet. While with modest efforts the calculation
of Z(T, h, n,N ) can be extended for larger N , exact-
diagonalization computations for n = 6 (n = 5) electrons
and N = 8 (N = 12) cells if U is finite (if U → ∞) are
at the nowadays limits.
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