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We consider the spin-1/2 antiferromagnetic XXZ Heisenberg model on a two-dimensional network of weakly
coupled frustrated diamond chains, i.e., a spin model related to the celebrated azurite compound. Using the strong-
coupling approach we construct an effective Hamiltonian which yields the low-temperature high-field properties of
the spin system. We examine effects of interchain interactions on localized-magnon physics.
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1. Introduction

There is a wide class of frustrated quantum Heisenberg
antiferromagnets which exhibit the so-called localized-
magnon physics, i.e., they have spin excitations
which are located within a small part of the lattice
(trap) [1]. The existence of localized states is related
to a completely dispersionless (flat) lowest-energy one-
magnon band. Localized-magnon states dominate low-
temperature thermodynamics at high magnetic fields.
By mapping onto a classical hard-core lattice gas, cor-
responding thermodynamic quantities can be calculated
by classical statistical mechanics [2]. For a recent review
on localized magnons see Ref. [3].

Among real-life compounds, there are several can-
didates which are expected to show localized-magnon
physics. A natural mineral azurite, Cu3(CO3)2(OH)2, is
the most prominent one [4]. A basic model for this com-
pound is a frustrated spin-1/2 antiferromagnetic Heisen-
berg chain of “distorted diamond” geometry [4–6]. Fur-
thermore, a small anisotropy of the exchange Heisenberg
interaction may be expected and a full three-dimensional
model must take into account (weak) interchain interac-
tions. Thus, to provide theoretical predictions for, say,
low-temperature high-field magnetization curve one has
to extend the localized-magnon description taking into
consideration deviations from the ideal flat-band geom-
etry, exchange interaction anisotropy, and interchain in-
teractions. In our previous studies we examined effects of
nonideal flat-band geometry [7] and exchange interaction
anisotropy [8]. In the present study, we focus on the effect
of interchain interactions, unavoidably present in a real
compound. Although we bear in mind a spin model for
azurite, we do not intend to explain this specific case but
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rather to consider theoretically a two-dimensional net-
work of frustrated diamond spin chains with weak in-
terchain interactions and to discuss the effect of the in-
terchain coupling on localized-magnon features. To this
end, we assume a simple geometry for interchain cou-
pling proposed in Ref. [9] as shown in the upper part
of Fig. 1.(Note, however, that this two-dimensional spin
lattice cannot yield a consistent picture of experiments
for azurite [5], rather it is adopted in our study only as a
typical example.) In what follows we will elaborate an ef-
fective description of the model using the strong-coupling
approach [10].

2. Coupled frustrated diamond spin chains.
Effective model

To be specific, we consider the spin-1/2 antiferromag-
netic XXZ Heisenberg model of weakly coupled frus-
trated diamond chains in a magnetic field with the Hamil-
tonian

H =
∑
(ij)

Jij
(
sxi s

x
j + syi s

y
j +∆szi s

z
j

)
− h

N∑
i=1

szi . (1)

Here the first sum runs over all neighboring bonds of
the N -site lattice, Jij > 0 is the antiferromagnetic in-
teraction between the neighboring sites i and j and it
acquires different values as shown in the upper part of
Fig. 1, and 0 ≤ ∆ ≤ 1 is the XY -like exchange interac-
tion anisotropy. Moreover, we imply periodic boundary
conditions.

Since the vertical dimer bond J2 > 0 is the dominant
one we may use the strong-coupling approach to obtain
an approximate low-temperature high-field theory of the
system under consideration. As a main system, we con-
sider a collection of N = N/3 vertical dimers (J2 bonds)
and N isolated sites labeled by m, 3 at the “bare” satu-
ration field h0 = (1+∆)J2/2 and denote its Hamiltonian
as Hmain. The rest of the Hamiltonian given in Eq. (1)
(which contains the interaction terms J1, J3, and J4 and
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Fig. 1. Upper part: two-dimensional system of weakly
coupled frustrated diamond spin chains, see Ref. [9].
J2 is the strongest bond providing a trap for the lo-
calized magnon, J1 = J3 < J2/2 (ideal geometry) and
J1 6= J3, J1+J3 < J2, |J1−J3|/J2 � 1 (distorted geom-
etry), and J4 is the weakest bond connecting the chains.
Lower part: sketch for a square-lattice (pseudo)spin-1/2
isotropic XY model in a transverse field given in Eq. (3)
(effective model).

the Zeeman term with h − h0) is treated as a perturba-
tion V = H −Hmain. In the high-field regime the dimers
may be either in the state |u〉 = | ↑1↑2〉 or in the state
|d〉 = (| ↑1↓2〉 − | ↓1↑2〉)/

√
2 (the energy of these states

coincide when h = h0) while the spins at the sites m, 3
are in the spin-up state | ↑〉. Thus the ground state |ϕ0〉
ofHmain is 2N -fold degenerate at h = h0. After switching
on the perturbation V we can construct perturbatively
an effective Hamiltonian Heff , which acts in the space
spanned by |ϕ0〉 only but gives the exact ground-state
energy of H [11]:

Heff = PHP + PV
∑
α 6=0

|ϕα〉〈ϕα|
ε0 − εα

V P + . . . , (2)

where P = |ϕ0〉〈ϕ0| is the projector onto the ground-
state manifold of Hmain and |ϕα〉 (α 6= 0) are excited
states of Hmain. Finally, we may use the (pseudo)spin-

1/2 operators T z = (|u〉〈u| − |d〉〈d|)/2, T+ = |u〉〈d|,
and T− = |d〉〈u| to rewrite the effective Hamiltonian in
Eq. (2) in a better recognizable form.

After some straightforward calculations we arrive at
the following effective Hamiltonian:

Heff = NC+
∑
(mn)

Jmn (T
x
mT

x
n + T ymT

y
n )− h

N∑
m=1

T zm,
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4
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4
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4
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,
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4

2(1 +∆)J2
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1 +∆

2
J2 +∆

J1 + J3 + J4

2
. (3)

Here the first sum runs over the bonds on an auxiliary
square lattice of N = N/3 sites (see the lower part of
Fig. 1), Jmn acquires four different values, Jh, Jv, Jd, and
JD, see the lower part of Fig. 1. The obtained effective
model is a square-lattice (pseudo)spin-1/2 isotropic XY
model in a transverse field. Although the model contains
four different exchange couplings, it is unfrustrated. In
the limiting case when J4 = 0 Eq. (3) coincides with the
results obtained earlier [7, 8, 10]. In another limit when
J1 = J3 = J but J4 6= 0 Eq. (3) yields Jh = Jv = Jd = 0
but JD 6= 0, i.e., one faces a spin-1/2 XY chain in a
transverse field. This effective model is exactly solvable
by Jordan–Wigner fermionization method. Finally, one
can also consider the case when J4/|J1 − J3| � 1. Then
JD can be ignored and one faces a nonuniform triangular-
lattice spin-1/2 XY model in a transverse field.

To compare the initial model (1) with the effective
model (3) we perform exact-diagonalization study for
(periodic) finite systems. We consider the initial system
of N = 36 sites which correspond either to (i) 3 chains
of 12 sites or to (ii) 4 chains of 9 sites. We consider
several sets of parameters putting J2 = 3, J1 = J3 = 1
(ideal flat-band geometry), J1 = 0.85, J3 = 1.15 (dis-
torted geometry), J4 = 0 or J4 = 0.2, and ∆ = 1 or
∆ = 0. We focus on the ground-state magnetization
curves, see Figs. 2 and 3. As can be seen in Figs. 2 and
3, the magnetization jump at the saturation — a promi-
nent feature due to localized magnons [1] — is smeared
out if J4 6= 0. Effective-theory predictions for the region
of steep increase of the magnetization around the satura-
tion are somewhat underestimated. The agreement with
the initial-model results becomes better when ∆ → 0.
Inspecting a pattern of spin correlations calculated for
N = 3 × 12 (∆ = 1) at h = 0 one concludes that the
ideal geometry J1 = J3 = 1 is more robust to the in-
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Fig. 2. Ground-state magnetization curves for the set
of parameters ∆ = 1, J2 = 3, J1 = J3 = 1 (ideal ge-
ometry, upper part), J1 = 0.85, J3 = 1.15 (distorted
geometry, lower part), and J4 = 0 (green) and J4 = 0.2
(blue and red). Exact-diagonalization data refer to pe-
riodic systems of N = 36 sites (initial model) or of
N = 12 sites (effective model). Thick curves correspond
to initial-model predictions. Thin curves correspond to
effective-model predictions.

Fig. 3. The same as in Fig. 2, but ∆ = 0.

terchain coupling J4 = 0.2 than the distorted geometry
J1 = 0.85, J3 = 1.15.

3. Conclusions

In this paper, we examined a set of spin-1/2 frustrated
diamond chains which support localized-magnon states
in the presence of weak interchain couplings. Consid-
ering the case of low temperatures and high fields we
used the strong-coupling approach and elaborated an ef-
fective (pseudo)spin-1/2 model on a square lattice. The
effective model is unfrustrated and has three times less
sites than the initial model. Thus, the effective model
is simpler and can be studied by well known methods
as, e.g., quantum Monte Carlo. Comparing the ground-
state magnetization for the initial model and the effec-
tive one we observed a good agreement in the high-field
regime. The effective model provides even better results
if the anisotropy parameter for the initial model ∆ ap-
proaches the XY limit. In general, the suggested approx-
imation works reasonably well. However, from previous
studies for the pure one-dimensional case [7, 8] we know
that the accuracy of the strong-coupling approach be-
comes better if the vertical dimer bond J2 > 0 increases.
As to localized-magnon features, the interchain coupling
washes out the remarkable ground-state magnetization
jump at the saturation field. Finally, it is worthwhile not-
ing that the discussed approach can be applied to other
networks of coupled frustrated diamond spin chains.
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