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2D-photonic crystal has the close packed hexagonal structure of metallized spheres. The selection rules are
first necessary thing for understanding of interactions between differently polarized light and artificial photonic
structure. This problem is the object of our paper. Known methods of group theory allow to solve such problems.
However, the knowledge about symmetry of structure is the starting point of them. Usually the X-ray diffraction
provides such information about natural 3D-crystals. Such assumptions so far have to do after the visual research
of photonic structures in practice. Further these assumptions may be confirmed (or vice versa) by experimental
research of optical response of photonic structures. We assumed that the symmetry of photonic structure is close
to 2D (P6mm) group. Group-theoretical calculations were provided using the system of computer mathematics
Maple. Both polarizations, normal to surface and parallel to that plane, were taken into consideration. The
obtained selections rules were confirmed later by independent experiments.

DOI: 10.12693/APhysPolA.132.1227
PACS/topics: 68.90.+g, 61.44.Br, 78.66.–w

1. Introduction

Hybrid 2D-photonic structure consists of assembling
monolayers (MLs) of closely packed colloidal micro-
spheres on a metal-coated glass substrate (Fig. 1). This
architecture is one of several realizations of hybrid
plasmonic-photonic crystals (PHs), which differ by di-
mensionality and metal film corrugation [1–3].

We considered this structure as infinite two-periodical
layer that lies in a plane (x, y). Axis z is normal to the
plane of the layer. Basic translations vectors of the same
norm are evidently not normal because have special angle
2π/3. Thus, 2D-elementary cell is correct hexagon (see
Fig. 1b) with two spheres inside. It is an approximation
obviously, because the real structure is size limited.

The exploring of those properties of structures that
are caused by their symmetry was the main goal for us.
In particular, it was necessary to establish the so-called
“rules of selection”. It is the list of allowed transitions be-
tween electronic states of different symmetries and ener-
gies inducible by light of varying polarization. Additional
interest for us was to examine the possibilities of known
system of computer mathematics MAPLE 18 within this
specific field.

2. Analysis of research and publications

The same norms of both basic translations and spe-
cific angle between them define unambiguously a two-
dimensional hexagonal primitive lattice. There are only
17 of two-dimensional symmetry groups in general and 13
of them are symmorphic. Just 5 kinds of two-dimensional
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Fig. 1. Artificial two-dimensional plasmonic-photonic
crystals [2, 3].

lattices are known and only one of them is hexagonal
primitive [4, 5]. Above-mentioned reasons define unam-
biguously the group of symmetry of structure shown in
Fig. 1.

This group has notation P6mm and belongs to sym-
morphic groups. It means the presence within this group
of a point subgroup (that is 6mm = C6v), which is iso-
morphic to factor-group of P6mm group by its transla-
tions subgroup.
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Figure 2 shows elements of symmetry of this point sub-
group [5]. This group consists of 12 elements of symmetry
divided on 6 classes of conjugated elements [4]. Main axis
(6) is one-sided, because the symmetry center is absent
in P6mm group of symmetry as an independent element.
It is normal to the plane of structure.

Fig. 2. Elements of P6mm point group of symmetry.

The basic elements of symmetry, or so-called genera-
tors, for this point group are two elements: main axis of
six-order (C6) and one of three vertical planes of symme-
try (σ1) of first kind. Figure 2 displays the vertical planes
of symmetry of first and second kinds (σ2) by different
way.

3. Methods and results

3.1. Matrix presentation of group elements with Maple

We need only two matrices for generation of all ele-
ments of group. They are the matrices of generators of
course. Moreover, it should be matrices with (2× 2) size
because we deal with 2D group. This problem is solvable
by LinearAlgebra program package of Maple [1]:

C6 =


1

2
−
√
3

2√
3

2

1

2

 , (1)

σ1 =

(
−1 0

0 1

)
. (2)

Now we can easily obtain all another matrices and their
traces using command of above package. The clockwise
rotation around main axis on angle 5π/6:

C5
6 = (C6)

−1. (3)
Two rotations around main axes on angles π/3 and

2π/3:
C3 = (C6)

2, C2
3 = (C6)

4. (4)
One rotation around main axis on the angle π/2:
C2 = (C6)

3. (5)
Two additional to (2) planes of mirror reflections of

first kind

σ2
1 = (σ1)

2, σ3
1 = (σ1)

3. (6)
Three vertical planes of mirror reflection of second kind
σ2 = C6σ1, σ2

2 = (C6)
3σ1, σ3

2 = (C6)
5σ1. (7)

Identity element of course

E =

(
1 0

0 1

)
. (8)

All 12 elements of symmetry of group 6mm are pre-
sented above as matrices.

3.2. Characters of irreducible representations as vectors
for 6mm group

We could obtain the number of irreducible representa-
tions (irreps) and their characters by standard methods
of group theory from traces of above matrices. Yet, this
has been already done before us [4]. The group has four
1D irreducible representations (A1, A2, A3, A4) and two
2D (E1, E2) according to the well-known Bernside theo-
rem. Therefore, the energy spectra of P6mm structure
consist of energy levels of six above-mentioned types of
symmetry. Two of them are twice degenerated by sym-
metry.

We only allowed ourselves to present the characters [4]
in a bit unusual, but convenient for calculations of vector
forms. According to this A1 is 1D irreducible represen-
tation transform z-components of polar vectors. It may
be pulse for instance or normal to plane and longitudinal
polarized regarding to the main axis light

A1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] . (9)
Another 1D-irrep transforms the z-components of an ax-
ial vector

A3 = [1, 1, 1,−1,−1,−1, 1, 1, 1,−1,−1,−1] . (10)
Such vector may be pulse momentum for example.

Two other 1D-irreps are the following:
A2 = [1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1] , (11)

A4 = [1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1, 1] . (12)
First 2D-irrep is
E1 = [2,−1,−1, 0, 0, 0, 2,−1,−1, 0, 0, 0] . (13)
The second of them is interesting because transforms

the (x, y)-components of polar and axial vectors
E2 = [2,−1,−1, 0, 0, 0,−2, 1, 1, 0, 0, 0] . (14)

3.3. Selection rules
3.3.1. Transitions stimulated by longitudinal polarized
light

Let the light rays are polarized normal to the plane of
structure i.e. longitudinal with respect to main axis of
symmetry. Then the perturbation operator transforms
according to 1D irreducible representation A1(W = A1).

Let X,Y are characters of irreducible representation
according to which it transforms the states belonging
to two of six above mentioned energy levels X,Y ∈
(A1, A2, A3, A4) and X[i], Y [i] are components of these
vectors (i = 1, 2, ..12). Then the transitions X ↔ Y are
allowed at stimulation by operator, which transforms ac-
cording to the irreducible representation W only under
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the condition that the sum
(

1
12

∑12
i=1X[i] ·W [i] · Y [i]

)
is

non-zero.
It can be demonstrated that the transitions between

states of the same symmetry but different energies are
always allowed in this case (Table I).

TABLE I

Allowed transitions for longitudinal polarization.

A1 −→ A1 : 1
12

∑12
i=1 A1[i] ·A1[i] ·A1[i] = 1

A2 −→ A2 : 1
12

∑12
i=1 A2[i] ·A1[i] ·A2[i] = 1

A3 −→ A3 : 1
12

∑12
i=1 A3[i] ·A1[i] ·A3[i] = 1

A4 −→ A4 : 1
12

∑12
i=1 A4[i] ·A1[i] ·A4[i] = 1

E1 −→ E1 : 1
12

∑12
i=1 E1[i] ·A1[i] · E1[i] = 1

E2 −→ E2 : 1
12

∑12
i=1 E2[i] ·A1[i] · E2[i] = 1

Any another transitions are obviously prohibited. One
of them for example (E1 −→ A3) transition is prohibited:(

1
12

∑12
i=1E1[i] ·A1[i] ·A3[i] = 0

)
.

Thus the normal to the surface and parallel to the main
optical axis polarization of light allowed only transitions
between states of the same symmetry but varying energy.
The selection rule is extremely simple at the case.
3.3.2. Transitions stimulated by transversal polarized
light

The perturbation operator W transforms according
to the 2D irreducible representation E2 at this case
(W = E2). Since the selection rules are more compli-
cated (Table II).

TABLE II

Allowed transitions for transversal polarization.

A1 −→ E2 : 1
12

∑12
i=1 A1[i] · E2[i] · E2[i] = 1

A2 −→ E1 : 1
12

∑12
i=1 A2[i] · E2[i] · E1[i] = 1

A3 −→ E2 : 1
12

∑12
i=1 A3[i] · E2[i] · E2[i] = 1

A4 −→ E1 : 1
12

∑12
i=1 A4[i] · E2[i] · E1[i] = 1

E1 −→ A2 : 1
12

∑12
i=1 E1[i] · E2[i] ·A2[i] = 1

E2 −→ A1 : 1
12

∑12
i=1 E2[i] · E2[i] ·A1[i] = 1

E1 −→ E2 : 1
12

∑12
i=1 E1[i] · E2[i] · E2[i] = 1

The transitions between states with the same symme-
try are prohibited at first. There is one of them for in-
stance:

(
1
12

∑12
i=1A1[i] · E2[i] ·A1[i] = 0

)
.

4. Conclusions

The software package LinearAlgebra of computer
mathematics system MAPLE provides opportunities for
calculating energy spectra of hybrid plasmonic-photonic
crystals. Thus in such polarization there are allowed
some transitions between states of different symmetry
and energies in both possible directions. Especially, the
transitions are allowed among states with such symme-
tries

A1 ←→ E2 ←→ A3

l
A2 ←→ E1 ←→ A4

All conclusions obtained above were confirmed experi-
mentally [2, 3].
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