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Bending of Laminated Composite Beams by a Multi-Layer
Finite Element Based on a Higher-Order Theory
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In this study, a layered beam element based on a higher-order theory is presented for bending analysis of
laminated composites. This is an N -layer element which contains (9N+7) degrees-of-freedom. The element stiffness
matrix is derived by means of the Lagrange equations. Deflections and stresses in laminated beams with different
end conditions and stacking order are calculated numerically. The results are compared with those available in the
literature to show the accuracy of element.
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1. Introduction

Composite materials may be preferred for many rea-
sons, for example they are stronger, lighter when com-
pared to traditional materials. There is a vast literature
related to the laminated composite beams. Reddy [1]
gave analytical and numerical solutions to bending, buck-
ling and free vibration problems of laminated compos-
ite beams and plates in a comprehensive manner. Yuan
and Miller [2] derived a higher-order multilayered ele-
ment for bending of laminated beams to accurately pre-
dict the transverse shear stress distribution through-the-
thickness. Khdeir and Reddy [3] solved bending of cross-
ply laminated composite beams with different end con-
ditions by using the state-space approach. Kapuria et
al. [4] proposed an efficient zigzag one-dimensional the-
ory of laminated beams. Kahya [5] presented dynamic
analysis of laminated beams traversed by moving loads
using a multilayered beam element based on the first-
order shear deformation theory. Filippi and Carrera [6]
proposed one-dimensional layer-wise theories that make
use of higher-order zig-zag functions for bending and vi-
bration analyses of laminated beams. Experimental stud-
ies have also been presented in the literature related to
mechanical behavior and bending analysis of fiber rein-
forced composite structures [7, 8].

Here, we present bending of laminated composite
beams. This N -layer element contains (9N + 7) degrees-
of-freedom (DOFs). Delamination and slip between the
layers are not allowed. Accuracy of the element is val-
idated through the comparisons with available results
for normalized maximum deflections, normal stresses and
shear stresses of laminated beams with different bound-
ary conditions and lamination scheme.

2. Theory and finite element formulation

According to higher-order shear deformation theory
considered for the present work, displacements at any
point in the beam (U , W ) are assumed as in the follow-
ing form:

U(x, z) = u(x)− zφ(x)− z2β1(x)− z3β2(x),

W (x, z) = w(x), (1)
where u, w and φ are the axial and transversal displace-
ments, and cross-sectional rotation, respectively. β1 and
β2 are higher-order terms arising from the Taylor expan-
sion. All displacement components are measured on the
neutral axis.

Figure 1 shows five-noded beam element with four
equally spaced nodes and a node at the middle. It has
sixteen DOFs including three axial and four transversal
displacements, and nine rotations which are measured
on the neutral axis of the beam. The nodal displacement
vector can thus be given as

q = (2)

{u1 · · ·u3w1 · · ·w4φ1 · · ·φ3β11 · · ·β13β21 · · ·β23}T

Assume the solutions to be

u(x) =

3∑
i=1

ϕi(x)ui,

w(x) =

4∑
i=1

ψi(x)wi,

φ(x) =

3∑
i=1

θi(x)φi,

β1(x) =

3∑
i=1

$1i(x)β1i,

β2(x) =

3∑
i=1

$2i(x)β2i, (3)

where ϕi(x), ψi(x), θi(x), $1i(x) and $2i(x) are the
shape functions. The governing equations of motion can
be obtained by the Lagrange equations which is given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (4)

where L = T − U is the Langragian functional, qi de-
notes the generalized coordinates corresponding to nodal
displacements given by Eq. (2). T and U represent the
kinetic and strain energy of the beam, respectively. Dot
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denotes derivative with respect to time. Equation of mo-
tion of the single lamina element can be written as

ku = f , (5)
where k is the stiffness matrix, f is the external force
vector.

Stiffness matrix for the multi-layer beam element
shown in Fig. 2 can be obtained by adding only nine
rotational DOFs for each additional layer. Thus, total
number of DOFs becomes 9N + 7. The stiffness matrix
of the N -th layer is transferred into a new form involving
the DOFs of layer (N−1) plus the nine rotations from the
layer N , then, added to the matrix of (N − 1)-th layer.
These combined matrices are then further altered to in-
clude the DOFs of layer (N − 2), and so on in sequence
until the matrices for all layers have been assembled into
a single stiffness matrix as

Ke = R(1)Tk(1)R(1) + T (1)T(R(2)Tk(2)R(2) + T (2)T

×(R(3)Tk(3)R(3) + . . .+ T (N−2)T

×(R(N−1)Tk(N−1)R(N−1)

+T (N−1)Tk(N)T (N−1))T (N−2)) . . .)T (2))T (1). (6)

Fig. 1. One-layer beam element with sixteen degrees-
of-freedom.

Fig. 2. Multilayered beam element.

For the entire beam with length L, the global matrix
equation of motion can be given by

KX = F , (7)
where K is the global stiffness matrix, X is the nodal
displacement vector including unknowns for the N -layer
beam.

3. Numerical results

Examples for demonstrating the present element’s ac-
curacy to find displacements and stresses of laminated
beams with different boundary conditions and lamina-
tion scheme are given. Numerical results are obtained

by means of a computer code written in FORTRAN lan-
guage.

Laminated composite beams with different lamina lay-
up under center point load are considered. Material
properties are selected as E1/E2 = 25, G12 = G13 =
0.5E2, G23 = 0.2E2 and ν12 = 0.25 (Reddy, 1997).
Table I shows normalized maximum deflections (v̄ =
100vEAh2/PL3) for different L/h and boundary condi-
tions. As can be seen in the table, results of the present
model agree well with the analytical solution based on
the first-order shear theory by Reddy (1997).

In Fig. 3, the maximum normal (σ̄ = σAh/PL)
and shear stress (τ̄ = τA/P ) distributions through the
thickness of a symmetrically laminated (0/90)s compos-
ite beam with simple supports are given. To avoid the
effect of shear, very slender beam (L/h = 100) is consid-
ered. The present model has a good accuracy for normal
and shear stresses with the analytical solution based on
the first-order shear theory.

TABLE I

Normalized maximum deflections v̄ for laminated
composite beams under center point load. Top
values — this paper, bottom values —analytical,
Ref. [1]; H–H— hinged boundary conditions, C–C
— clamped boundary conditions.

Laminate L/h H–H C–C
0 10 1.588 0.826

1.600 0.850
20 1.148 0.397

1.150 0.400
100 1.005 0.256

1.001 0.256
90 10 25.596 6.843

26.500 7.750
20 25.149 6.398

25.375 6.625
100 25.006 6.256

25.015 6.265
(0/90)s 10 1.706 0.848

1.991 1.141
20 1.280 0.426

1.348 0.498
100 1.142 0.290

1.143 0.292

4. Conclusion

A multilayered higher-order finite element for bending
analysis of laminated composite is presented. Slip and
delamination between the layers are not allowed. Ele-
ment matrices are derived through Lagrange’s equations.
According to results of the study, the present element can
predict deflections and stresses of thin and thick compos-
ite beams with different number of layers and lamination
scheme in a good accuracy.
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Fig. 3. Normal and shear stresses through the thickness of a simply supported (0/90)s laminated beam.
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