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Naturally, genes interact with each other by forming a complicated network and the relationship between
groups of genes can be shown by different functions as gene networks. Recently, there has been a growing concern
in uncovering these complex structures from gene expression data by modeling them mathematically. The Gaussian
graphical model is one of the very popular parametric approaches for modelling the underlying types of biochemical
systems. In this study, we evaluate the performance of this probabilistic model via different criteria, from the change
in dimension of the systems to the change in the distribution of the data. Hereby, we generate high dimensional
simulated datasets via copulas and apply them in Gaussian graphical model to compare sensitivity, specificity, F -
measure and various other accuracy measures. We also assess its performance under real datasets. We consider that
such comprehensive analyses can be helpful for assessing the limitation of this common model and for developing
alternative approaches, to overcome its disadvantages.
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1. Introduction

The biologists routinely use high-throughput techno-
logies such as microarrays to measure the expressions of
genes. Accordingly, it is usual to apply multivariate met-
hodologies in order to analyze these large datasets and
to disclose various interactions among genes, that cannot
be established from individual gene-based approaches.

Thereby, the inference of gene networks plays an im-
portant role in enlightening the underlying interactions
among genes, that may lead to a better understanding
of biological activations in organisms. In this study, we
focus on a graphical modeling approach, that purposes at
finding relationships in a group of genes, where a graph is
used for encoding relationships among multiple variables.

When a graph is used for a gene network, the nodes
represent genes and the edges indicate interactions bet-
ween the linked genes. In other words, if any two genes
are connected to each other by an edge, indirectly, they
can be affected by other genes. Therefore, the appea-
rance profiles of two genes are correlated, as long as they
are both regulated by some other genes. Hence, the large
datasets allow us to infer the relationships among these
genes and the Gaussian graphical model (GGM) is one
of the well-known alternative approaches to get these fin-
dings.

Indeed, this model is also suggested as the alternative
of differential equations (DE) modelling in the descrip-
tion of the steady-state activation of the biological sys-
tems. But the DE models are deterministic [1–7], whe-
reas, GGM is probabilistic. GGM is simply dependent on
the estimated partial correlation matrix, interpretation of
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which is straightforward under the normality assumption
of the data [8]. Here, the zero entry implies no relation
between the associated pair of genes, due to the feature
of the conditional independence under the multivariate
normal distribution.

Thus, under the GGM assumption, the graph structure
can be estimated using the sparsity pattern of the inverse
covariance matrix Σ, also called the precision or concen-
tration matrix Σ−1 = Θ [8]. There are different appro-
aches to infer Θ in GGM. Among alternatives, the neig-
hborhood solution method [9] and the graphical lasso or
glasso approach [10], are the most commonly used ones.

In this study, we choose the glasso approach in our
analyses in the estimation of Θ. This method is ori-
ginated from the lasso regression with the `1-norm via
Y (p) = βY (−p) + ε, where the node Y (p) depends on the
rest of the nodes Y (−p) and β denotes the p-dimensional
regression coefficients [8].

Here, it is assumed that ε has a p-dimension and
it is a multivariate normally distributed random error
with the zero mean vector and the covariance matrix∑

p×p. We can present the objective function that is
maximized with respect to Θ under the `1-penalized log-
likelihood function as log det (Θ)− tr (SΘ)− λ|Θ|1, in
which n is the number of observations, p denotes the
number of nodes and S shows the empirical covariance
matrix. Furthermore, λ is the non-negative Lagrange
multiplier. When λ gets larger, the biological network
becomes sparser [10]. Finally, tr(.) and det(.) describe
the trace and determinant, respectively, and |Θ|1 repre-
sents the `1-norm of Θ.

In the calculation, the optimal selection of λ can
be done by different approaches, such as STAR [11],
EBIC [12] and RIC [13]. Here, we select RIC (rotation
information criterion) since it is the most common mea-
sure of GGM, if the inferences are conducted by the glasso
method [13]. Accordingly, in this study, we investigate
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the performance of GGM comprehensively under diffe-
rent distributions, from normal to skew densities, with
distinct mixtures of marginals, via copula and various
dimensions. We evaluate the outputs based on various
measures of accuracy and interpret the results.

2. Methods

2.1. Copula

In our analyses, we perform copulas to generate diffe-
rent joint distributions in modelling via GGM. In gene-
ral, copulas provide the theoretical framework in which
the multivariate associations can be modeled separa-
tely from the univariate distributions of the observed
variables, based on the Sklar theorem by H(x, y) =
C{F (x), G(y)} [14]. Here, if x and y represent two con-
tinuous random variables, the copula function C, which
characterizes the joint dependency of x and y, should be
unique.

There are seven major types of copulas, namely, Gaus-
sian, Student-t, Gumbel, FGM, Clayton and Frank co-
pulas. Each of them presents distinct ranges for the
random variables and denotes different levels of corre-
lations. Archimedean copula families, which are compo-
sed of the Gumbel, Frank and Clayton copulas, are con-
structed with only a single dependency parameter θ [14].
Furthermore, it is not clear which parameters create a
reliable model under which values and which dependence
structure can be created by the given copula function.
Moreover, in the Archimedean family, the Gumbel and
Clayton copulas do not have explicit density expressions,
if we infer their copula terms [15].

Hereby, as the Gaussian copula does not have these
limitations, is applicable for high dimensional data and
covers both low and highly correlated systems, we use it
in our analyses with a wide variety of marginals. The
Student-t copula also has a similar feature. Whereas, as
it is not mathematically convenient and its outcomes are
similar to the Gaussian copula, we choose the Gaussian
copula due to its computational facilities in calculations.

2.2 Measure of accuracy

In this research, in order to assess the performance
of GGM, we apply the well-known accuracy measures,
which are the precision, recall, F1-score, false positive
rate (FPR), true positive rate and the accuracy whose
mathematical descriptions are given in Table I. In these
expressions, TP denotes the true positive value, which is
the number of correct predictions of actually positive en-
try; FP represents the false positive value, that indicates
the number of incorrect predictions of actually negative
entry; FN refers to the false negative rate, which implies
the number of incorrect predictions of actually positive
entry and finally, TN shows the true negative rate that
is the number of correct predictions for actually negative
entries. In these accuracy measures, apart from FPR,
the perfection levels are equal to one and for FPR, the
best performance is seen under the zero entry.

TABLE I

Formulas of accuracy measures.

Accuracy measure Formula
Precision TP

TP+FP
Recall TP

TP+FN

F1-score 2× (Precision)(Recall)
Precision+Recall

Accuracy TP+TN
TP+TN+FP+FN

False positive rate FP
TN+FP

3. Application

3.1. Application with simulated data
In the light of the assessment of the limitation of this

common model, different runs are completed under vari-
ous scenarios by performing the Monte Carlo simulation.
In each analysis, we use 1000 iterations. To evaluate the
adequacy of GGM, we compare the exact graph path,
i.e., the population graph path, with the estimated graph
path, i.e., sample graph path, under different dimensions,
graph structures and copula functions. Moreover, in our
simulation, we take the total number of nodes, i.e. genes,
that is also named as the dimension of the networks as 20,
50 and 100 nodes. For each dimension, a random sample
of size twenty (n = 20) is drawn from the simulated mul-
tivariate data to be modeled by GGM. The findings are
shown in Tables II and III. In these comparative analyses,
the simulations are separated into two parts, which are
the GGM application in multivariate normal data and
multivariate data with the Gaussian copula function.

In the first class, the multivariate normally distributed
data are created under different biologic networks and
dimensions. Four types of biologic networks, which are
scale-free, cluster, random and hubs are used to assess
their differences in the implementation of GGM. Howe-
ver, it is known that the scale-free networks are the most
common types for the biological systems [16]. Thereby,
after generating 20 observations for each node in the sy-
stem, the graphical lasso (glasso) method is implemented
to infer the graph path.

In the application of the glasso method, the estima-
tion of the penalty constant λ is performed via the RIC
criterion, as stated beforehand. On the other hand, in
the second stage of the study, the multivariate data are
simulated via the Gaussian copula functions and applied
in GGM. In this assessment, we use the normal, Student-
t, log-normal [17] and the exponential marginals within
the copula function, with their suitable parameters. In
the selection of these marginals, we consider that the
Student-t is one of the close alternatives of normal dis-
tributions. The log-normal distribution is particularly
preferable for the data with extreme positive values, as
observed in most of the biological mechanisms (e.g., expo-
nential growth) and chemical phenomena (e.g., the velo-
city of a simple reaction) [15].

In Table II, we represent the accuracy measures of
different network types under multivariate normal data.
From the results, it is seen that the accuracy measures
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TABLE II
Accuracy measures of GGM for different types of net-
works under multivariate normality.

Graph type
Number
of nodes

Precision Accuracy
Recall
(TPR)

FPR F1-score

20 0.467 0.902 0.207 0.0262 0.320
Scale-free 50 0.390 0.960 0.016 0.001 0.030

100 0.249 0.980 0.001 0.000 0.001
20 0.540 0.862 0.192 0.028 0.303

Random 50 0.497 0.942 0.018 0.001 0.035
100 0.492 0.970 0.001 0.000 0.002
20 0.573 0.738 0.118 0.035 0.198

Cluster 50 0.540 0.888 0.015 0.002 0.030
100 0.485 0.943 0.000 0.000 0.002
20 0.487 0.909 0.296 0.033 0.428

Hubs 50 0.456 0.962 0.033 0.002 0.061
100 0.466 0.926 0.002 0.000 0.004

of GGM decrease, while the network becomes larger for
all network types.

Moreover, the best performance is observed under
scale-free and hubs networks, as they are very close to
each other in terms of the sparsity performance of the
graphs [16]. Whereas, the accuracy measures decrease
significantly if the systems are random or cluster types.

Furthermore, in Table II, it is found that even under
multivariate normality, apart from accuracy and FPR,
none of other measures indicate good performance, alt-
hough GGM is originally designed for the data from this
sort of distribution.

On the other hand, in order to observe the accuracy
of GGM under non-normal data, we initially apply the
Student-t margins with the degrees of freedom 10, since
the higher degrees of freedom bring us the wider data
distribution, similar to the normal distribution.

From the results in Table III, it is seen that all entries
considerably decrease, even though the Student-t distri-
bution is one of the close alternatives of the multivari-
ate normal distribution. If we repeat the analyses under
log-normal marginals, we detect that the performance
of GGM becomes worse. Here, we take two choices of
standard deviations, as the higher deviation implies more
skewed structure and captures more extreme values.

On the contrary, when the standard deviation decrea-
ses, the shape of the distribution looks like a more sym-
metric, similar to the normal distribution. Then, to de-
tect the GGM performance in skew data, we take the
exponential distribution margins with rate λ = 4. From
Table III, it is found that GGM can capture some direct
edges between nodes and its accuracy is slightly higher
with respect to the results of symmetric data.

Finally, besides the simulation of the Gaussian copula
with single marginal types, we also model the copula
function with mixed marginals, to observe the perfor-
mance of this well-known model under mixed densities.
Hereby, we apply a join distribution, whose half of the
data is from the exponential marginals with rate 4 and
other half is from the normal marginal with mean zero
and variance 4. As seen from the Monte Carlo results,
GGM cannot capture any direct edges between nodes and
the model can merely assign zeros.

3.2 Application with real data

In this part, we apply GGM to two bench-mark real
biological datasets. As the first dataset, we use the cell
signaling data, which contain information about 11 phos-
phoproteins and some phospholipids [18]. These 11 pro-
teins are called as praf, pmek, plcg, PIPP2, PIP3, p44.42,

TABLE III

The accuracy table of GGM for different marginal distributions under scale-free networks (Not Comp.
stands for not computable and stnd. dev. stands for standard deviation).

Marginals Number of nodes Precision Accuracy Recall (TPR) FPR F1-score
Student-t 20 0.575 0.906 0.053 0.004 0.092

(degree of freedom=10) 50 0.533 0.961 0.000 0.000 0.000
100 Not Comp. 0.980 0.000 0.000 0.000

Log-normal 20 Not Comp. 0.905 0.000 0.000 0.000
(mean=10, stnd. dev.=8) 50 Not Comp. 0.9608 0.000 0.000 0.000

100 Not Comp. 0.9802 0.000 0.000 0.000
Log-normal 20 Not Comp. 0.905 0.000 0.000 0.000

(mean=10, stnd. dev.=0.5) 50 Not Comp. 0.9608 0.000 0.000 0.000
100 Not Comp. 0.9802 0.000 0.000 0.000

Exponential 20 0.138 0.545 0.723 0.501 0.648
(rate=4) 50 0.058 0.650 0.515 0.352 0.550

100 0.028 0.748 0.347 0.247 0.434
Semi-exponential (rate=4) 20 Not Comp. 0.905 0.000 0.000 0.000

Semi-normal 50 Not Comp. 1 0.000 0.000 0.000
(mean=0, stnd. dev.=2) 100 Not Comp. 1 0.000 0.000 0.000
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pakts473, PKA, PKC, P38 and pjnk, where each of them
has 1000 observations, resulting in 11000 measurements
and whose true network structure is represented in Fig. 1.

Fig. 1. The true network of the cell signaling proteins.

From modeling of this dataset via GGM, we find none
of the underlying true links and GGM can merely assign
zero entries in the precision matrix for all estimated in-
teractions. In order to critic the plausible reason behind
this estimation, we check the QQ-plots of each protein
(see Supplementary material, Fig. S1) and we find that
the distributions of each marginal protein are far from
the normal density, although the structure of the system
is suitable for the GGM-type of the mathematical mo-
delling.

As the second real data application, we apply the hu-
man gene expression data which contain 100 transcripts,
measured on 60 unrelated individuals. The data are col-
lected by Stranger et al. [19] and are defined by Bhadra
and Mallick [20] and Chen et al. [21]. The purpose of
the data is to understand the gene expression in the B-
lymphocyte cells from the Northern and Western Euro-
pean ancestry from Utah. The main focus of these stu-
dies is the 3125 single nucleotide polymorphisms which
are found in the 5 UTR (untranslated region).

Hereby, from modelling via GGM, similar to the previ-
ous results, we cannot discover any of the validated links.
Then, to check the normality of this dataset as the plau-
sible source of deficiencies in the model, we compute the
Shapiro-Wilk test for the multivariate normality and we
take the significance level of 0.05. The results show the
departure from the normality with a p-value <2.2×10−16.
When we draw the QQ-plots of the genes, similar to the
findings of the first dataset, we find non-normal distri-
bution of the gene expressions. The univariate plots of
selected 15 genes are presented in Supplementary mate-
rial (Fig. S2), as examples of this analysis.

4. Conclusions

In this study, we have considered to comprehensively
evaluate the performance of Gaussian graphical model
(GGM), which is one of the common modelling approa-
ches for the description of the steady-state behaviors of
biological systems. For this purpose, we have assessed
the findings of GGM, first of all, under different dimen-
sions and then the topology of the networks and under
various distributions.

In all these calculations, we have computed the accu-
racy of the estimates based on various measures. From
Monte Carlo studies, under multivariate normal and dif-
ferent marginals bounded by the Gaussian copula, as well
as real data analyses, we have detected that the accuracy
of GGM is very limited and its performance is good only
under the very strict normality assumption and under
the scale-free type of networks.

Except for these special conditions, GGM cannot be
successful in modeling biochemical networks. Therefore,
in order to unravel this challenge, we consider to im-
plement non-parametric alternatives of GGM. For this
purpose, we have been working on MARS (multivari-
ate adaptive regression splines) and random forest mo-
dels [22]. Our current outputs have shown promising re-
sults and this topic is still an ongoing study of our group.
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Fig. S2. The QQ-plots of the human gene expression data by comparing the normal density.


