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Conformable Fractional Gradient Based Dynamic System
for Constrained Optimization Problem
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A conformable fractional gradient based dynamic system with a steepest descent direction is proposed in this
paper for a class of nonlinear programming problems. The solutions of the dynamic system, modelled with the
conformable fractional derivative are investigated to obtain the minimizing point of the optimization problem.
For this purpose, we use a step variational iteration method, adapted to use a conformable integral definition.
Numerical simulations and comparisons show that the conformable fractional gradient based dynamic system is
both feasible and efficient for a certain class of equality constrained optimization problems. Furthermore, the
step variational iteration method, combined with the conformable integral definition, is a reliable tool for solving
a system of fractional differential equations.
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1. Introduction

Optimization is an interdisciplinary subject, used by
scientists from various disciplines, to make the best pos-
sible decisions. This ensures that optimization is always
an interesting research topic for scientists [1–4]. In the
literature, several efficient methods have been put for-
ward to obtain the minimizing point of these problems.
A detailed and modern discussion of these methods can
be found in [5].

The gradient based method is one of these approaches,
which was first introduced by Arrow and Hurwicz [6] to
solve optimization problems. The main idea behind the
method is to replace the optimization problem with a sy-
stem of ordinary differential equations, which are equip-
ped with optimality conditions, in order to obtain the op-
timal solutions to the nonlinear programming problem.
Numerous works on this approach can be found in the
literature [7–17].

Fractional calculus, is another important scientific re-
search area [18], since many real-life problems can be
modelled in a more stable way with fractional derivati-
ves. Many researchers in this field have mainly focused
on developing analytical and numerical methods for sol-
ving different kinds of fractional differential equations.
The variational iteration method (VIM) is one of these
methods and was first introduced by He [19]. Recently,
Molliq et al. [20] defined the step VIM (SVIM) for obtai-
ning the essential behaviour of the system for a large
time t.

In this paper, we construct a conformable fractional
gradient based system for solving an equality constrai-
ned optimization problem. The conformable fractional
derivative has been recently defined by Khalil et al. [21].
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It is a natural extension of the usual derivative, and this
local operator preserves many of the properties of the
classical derivative (see [21, 22]). The proposed system
shows that the steady state solutions x (t) of the system
can be approximated to the optimal solutions x∗ of the
optimization problem on a continuous path as t → ∞.
The step variational iteration method (SVIM) is used to
achieve the intended results with a conformable deriva-
tive and integral definitions.

2. Preliminaries
2.1. Equality constrained optimization problem

Consider the nonlinear programming problem with
equality constraints:

min
x∈Rn

f (x) , s.t. h (x) = 0, (1)

where f : Rn → R, h : Rn → Rp are C2 functions.
The penalty methods aim to approximate a constrained
optimization problem by a sequence unconstrained opti-
mization problem. A well-known penalty function for the
problem in Eq. (1) is given by

Ppenalty(h (x)) =
1

γ

p∑
i=1

(hi(x))
γ
, (2)

where γ > 0 is a constant. It can be shown that under
some conditions the solutions to the problem in (1) are
the solutions of the following unconstrained one:

minF (x, η) = f(x) + η
1

γ

p∑
i=1

(hi(x))
γ
,

s.t. x ∈ Rn, (3)
where η > 0 is an auxiliary penalty variable and is suf-
ficiently large. One of the main results connecting the
minimizers of the problem in Eq. (1) and the unconstrai-
ned problem in Eq. (3) can be described as follows.
Theorem 1 [5, p. 404] Let {xk} be a sequence genera-

ted by the penalty method. Then any limit point of the
sequence is a solution to the constrained problem.
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2.2. Conformable fractional derivative

Fractional calculus generates great interest among
scientists, and numerous studies on fractional derivatives
and fractional integrals have been undertaken. The most
popular definitions in the literature are the Riemann-
Liouville’s fractional derivative and the Caputo fractional
derivative. These fractional derivative definitions are ge-
nerally used for the mathematical modelling within many
areas, when the usual integer order derivative operator is
not sufficient.

However, the greatest deficiency of these two definiti-
ons is that they do not provide some of the features that
the classical derivative provides, such as the derivative
of constant and the product rule. Recently Khalil et al.
in [21] have characterized a new fractional derivative ope-
rator, known as the conformable fractional derivative, to
overcome these deficiencies. Besides these advantages,
the conformable fractional derivative does not show the
memory effect, which is inherent for the other classical
fractional derivatives.
Definition 1 Let f : [0,∞) → R be a function.

The αth order conformable fractional derivative of f is
defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
,

for all t > 0 and α ∈ (0, 1).
This new definition preserves many properties of the

classical derivative [21, 22]. Some of the features that we
will use are as follows.
Theorem 2 Let 0 < α ≤ 1 and f, g be

α−differentiable at a point t > 0. If f is a differenti-
able function then dαf

dtα = t1−α df
dt .

Definition 3 Iaα(f)(t) = Ia1 (tα−1f) =
∫ t
a
f(x)
x1−α dx,

where the integral is the usual Riemann improper in-
tegral, and α ∈ (0, 1).
Theorem 3 Let f be any continuous function in the

domain of Iα. Then TαIaα (f) (t) = f (t), for all t ≥ a.
Theorem 4 Let f : (a, b) → R be differentiable and

0 < α ≤ 1. Then for all t > a we have IaαTα (f) (t) =
f (t)− f (a).

2.3. Variational iteration method

Let us consider the following general nonlinear diffe-
rential equation to express the VIM,

L (u (t)) +N (u (t)) = g (t) , (4)
where L is a linear operator, N is a nonlinear operator
and g (t) is a known analytical function [19]. We can
construct a correction functional for (4) as follows,

ui,k+1 (t) = ui,k (t)

+

∫ t

t0

λ (τ) {L (ui,k (τ)) +N (ũi,k (τ))− g (τ)} dτ, (5)

where λ is a general Lagrange multiplier, which can be
identified optimally via variational theory, and k is the
kth approximation. Here ũi,k is a restricted variation

and δũi,k = 0. Finally, the exact solution may be
obtained as

ui (t) = lim
k→∞

ui,k (t) .

3. Conformable fractional gradient based
dynamic system

Consider the optimization problem with equality con-
straints defined by Eq. (1). Generally, these types of pro-
blems are solved by transforming to the unconstrained
optimization problem (3). In the next step, some tradi-
tional methods are used to minimize the unconstrained
problem.

In this article, a conformable fractional gradient ba-
sed dynamical system is handled for obtaining optimal
solutions of (1) with the help of the step variational ite-
ration method. The conformable fractional derivative is
used for modelling. This kind of fractional gradient ba-
sed approach for solving optimization problems was first
introduced by Evirgen and Özdemir [23–25].

Utilizing the penalty function (2) for problem (1) with
γ = 2, the conformable fractional gradient based dyna-
mic model can be defined by the following expression:

Tαx (t) = −∇xF (x, η), 0 < α ≤ 1,

xi (0) = xi0, i = 1...n,
(6)

where ∇xF (x, η) is the gradient vector of (2) with re-
spect to the x ∈ Rn.
Definition 4 A point xe is referred to as an equili-

brium point of (6) if it satisfies the right-hand side of
Eq. (6).

The conformable fractional gradient based dynamic sy-
stem (6) can be expressed in a more convenient form as
follows:

Tαxi (t) = gi (t, η, x1, x2, ..., xn) , i = 1, 2, ..., n. (7)
The stable equilibrium point of the conformable fracti-
onal order system (7) is acquired with the SVIM algo-
rithm. The SVIM can be described in terms of certain
modifications to VIM. In this approach, to ensure the va-
lidity of the approximations of VIM for large t, we need
to treat (5) under the equally divided intervals of [t0, t)
such as [t0, t1), [t1, t2),..., [tj−1, tj = t).

The correction functional for the system of conforma-
ble fractional nonlinear differential equation (7), accor-
ding to the SVIM, can be constructed as

xk+1
i (t) = xki (t) + It

∗

α

(
λi (τ)

(
Tαx

k
i (τ)

−gi
(
x̃k1 (τ) , ..., x̃kn (τ)

)))
dτ, (8)

where t∗ is the left end point of each subinterval, λi,
i = 1, 2, ..., n are general Lagrange multipliers, which
can be identified optimally via variational theory, and x̃1,
x̃2,..., x̃n denote restricted variations, such that δx̃i = 0.

By taking variation with respect to the independent
variable xi, i = 1, 2, ..., n, with δxi (t∗) = 0,

δxk+1
i (t) = δxki (t) + δ

∫ t−t∗

0

λi (τ)
(
x
′k
i (τ)

−gi
(
x̃k1 (τ) , ..., x̃kn (τ)

))
dτ,
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we obtain stationary conditions λ
′

i (τ) |τ=t = 0 and 1 +
λi (τ) |τ=t = 0, i = 1, 2, ..., n.

Therefore, the Lagrange multipliers can be easily iden-
tified as

λi = −1, i = 1, 2, ..., n. (9)
Substituting the Lagrange multipliers (9) into the cor-

rectional functional (8), we acquire the following SVIM
formula

xk+1
i (t) = xki (t)

−It
∗

α

(
Tαx

k
i (τ)− gi

(
x̃k1 (τ) , ..., x̃kn (τ)

))
dτ, (10)

for i = 1, 2, ..., n. If we begin with initial conditions
xi,0 (t∗) = xi,0 (t0) = xi (0), the iteration formula of
the SVIM (10) can be carried out within every subin-
terval of equal length ∆t, and so all solutions xki (t),
(i = 1, 2, ..., n; k = 1, 2, ...) are completely determined.

4. Numerical results

In this section, we give two examples to illustrate the
effectiveness and applicability of the proposed conforma-
ble fractional model (6). The SVIM is applied and com-
pared with the VIM and fourth order Runge-Kutta met-
hod (RK4).
Example 1: Consider the following nonlinear pro-

gramming problem [27, No. 216],

minimize f(x) = 100
(
x21 − x2

)2
+ (x1 − 1)

2
,

subject to h(x) = x1 (x1 − 4)− 2x2 + 12 = 0.
(11)

Firstly, the problem (11) is transformed to the uncon-
strained optimization problem with penalty function (2)
for γ = 2. Then we have

F (x, η) = 100
(
x21 − x2

)2
+ (x1 − 1)

2

+
1

2
η (x1 (x1 − 4)− 2x2 + 12)

2
,

where η ∈ R+ is an auxiliary penalty variable. There-
after, the corresponding conformable fractional gradient
based dynamic system from (6) is defined as

Tαx1(t) = −400(x21 − x2)x1 − 2(x1 − 1)

−η(2x1 − 4)(x21 − 4x1 − 2x2 + 12),

Tαx2(t) = 200(x21 − x2)+

2η(x21 − 4x1 − 2x2 + 12),

x1(0) = 0, x2(0) = 0,


(12)

where 0 < α ≤ 1.
Finally, to obtain the solutions of (12) the SVIM and

VIM are implemented with auxiliary penalty variable
η = 800, step size ∆T = 0.00001 and Lagrange multi-
pliers λi = −1, using the following iteration formula,

xk+1
i (t) = xki (t)− It

∗

α

(
Tαx

k
i (τ)

−gi
(
x̃k1 (τ) , ..., x̃kn (τ)

))
dτ, i = 1, 2.

In Fig. 1, it can clearly be seen that the conformable
fractional model reaches the optimal solutions of (11) af-
ter only one iteration using the SVIM. It can also be

verified that SVIM obtains the optimal solutions faster
than other methods.

Fig. 1. Comparison of x(t) for problem (11). Dash:
VIM (∆T = 0.00001) for α = 0.9, Dashdot: SVIM
(∆T = 0.00001) for α = 0.9, Solidline: SVIM (∆T =
0.00001) for α = 1, Circles: RK4 (∆T = 0.00001) for
α = 1.

Example 2: Consider the equality constrained pro-
blem [26, No. 76],

minimize f(x) = (x1 − 1)
2

+ (x1 − x2)
2

+ (x2 − x3)
2

+ (x3 − x4)
4

+ (x4 − x5)
4
,

subject to h1 (x) = x1 + x22 + x33 − 2− 3
√

2 = 0,

h2 (x) = x2 − x23 + x4 + 2− 2
√

2 = 0,

h3 (x) = x1x5 − 2 = 0.

(13)

This is a practical problem with an unknown exact solu-
tion. The conformable fractional gradient based system
for (13) is obtained through the previous steps as follows:

Tαxi(t) = −∇xif(x)− η
3∑

m=1
∇xihm (x) ,

x1(0) = 2, x2(0) = 2, x3(0) = 2,

x4(0) = 2, x5(0) = 2,

 (14)

where 0 < α ≤ 1 is the order of the conformable fracti-
onal derivative. Utilizing the SVIM (10) and VIM (5)
with penalty variable η = 300, step size ∆T = 0.00001
and Lagrange multipliers λi = −1, i = 1, 2, 3, 4, 5; the
solutions are acquired as shown in Tables I–III. In nu-
merical simulation, the VIM solutions for α = 0.9 are
divergent.

TABLE I

The value of x(t) for problem (13) obtained from SVIM
(α = 0.9)

SVIM (α = 0.9)

t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000
1.000
2.000
3.000
4.000
5.000
6.000

2.00000
1.19245
1.19122
1.19112
1.19111
1.19111
1.19111

2.00000
1.36356
1.36267
1.36259
1.36258
1.36258
1.36258

2.00000
1.47219
1.47275
1.47280
1.47280
1.47280
1.47280

2.00000
1.63214
1.63475
1.63492
1.63494
1.63494
1.63494

2.00000
1.67721
1.67894
1.67908
1.67909
1.67909
1.67909



Conformable Fractional Gradient Based Dynamic System for Constrained Optimization Problem 1069

TABLE II

The value of x(t) for problem (13) obtained from SVIM
(α = 1).

SVIM (α = 1)

t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000
1.000
2.000
3.000
4.000
5.000
6.000

2.00000
1.20227
1.19133
1.19053
1.19073
1.19091
1.19101

2.00000
1.34998
1.35990
1.36211
1.36172
1.36222
1.36250

2.00000
1.47634
1.47389
1.47325
1.47301
1.47290
1.47285

2.00000
1.65807
1.64085
1.63713
1.63593
1.63542
1.63518

2.00000
1.66342
1.67878
1.67992
1.67963
1.67937
1.67923

TABLE III

The value of x(t) for problem (13) obtained from RK4
(α = 1).

RK4 (α = 1)

t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000
1.000
2.000
3.000
4.000
5.000
6.000

2.00000
1.20162
1.19102
1.19038
1.19066
1.19088
1.19100

2.00000
1.34946
1.35966
1.36161
1.36216
1.36239
1.36249

2.00000
1.47666
1.47405
1.47333
1.47306
1.47293
1.47287

2.00000
1.65951
1.64157
1.63751
1.63613
1.63554
1.63525

2.00000
1.66436
1.67922
1.68013
1.67973
1.67942
1.67925

5. Conclusions

In this study, the conformable fractional gradient ba-
sed dynamic system is modelled for solving a certain class
of equality constrained optimization problems. To obtain
the optimal solution, the steepest descent direction is in-
tegrated into the dynamic model. In order to obtain con-
vergence, the step variational iteration method (SVIM) is
implemented with conformable integral definitions. Nu-
merical comparisons between the fourth-order Runge-
Kutta method(RK4), the SVIM (α = 1 and α = 0.9)
and VIM (α = 0.9) are made, and the results show that
the conformable fractional gradient based system is more
suitable and stable than the integer order system in obtai-
ning the optimal solutions to Eq. (1). In addition, the
new model gives a better approximation than the appro-
ach in [25]. Furthermore, we see that the SVIM, which is
integrated with the definition of the conformable integral,
is a reliable tool for solving fractional order differential
equations.
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