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Solution of a Class of Optimization Problems
Based on Hyperbolic Penalty Dynamic Framework
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In this study, a gradient-based dynamic system is constructed in order to solve a certain class of optimization
problems. For this purpose, the hyperbolic penalty function is used. Firstly, the constrained optimization problem
is replaced with an equivalent unconstrained optimization problem via the hyperbolic penalty function. Thereafter,
the nonlinear dynamic model is defined by using the derivative of the unconstrained optimization problem with
respect to decision variables. To solve the resulting differential system, a steepest descent search technique is used.
Finally, some numerical examples are presented for illustrating the performance of the nonlinear hyperbolic penalty
dynamic system.
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1. Introduction

Numerous commonly encountered problems in modern
science and technology involve a type of optimization pro-
blem, and optimization is thus an attractive research area
for many scientists in various disciplines [1–4]. In the li-
terature, several efficient methods have been discussed
for finding the feasible best solution to these problems.
A detailed and modern discussion of these methods can
be found in [5].

The gradient-based method is one of these approaches,
and was first introduced by Arrow and Hurwicz [6]. In
this approach, the optimization problem is transformed
into a system of ordinary differential equations, which are
equipped with optimality conditions, in order to find the
optimal solutions of the optimization problem. Similar
studies can be found in the literature [7–17].

In this paper, we construct a hyperbolic penalty dy-
namic system for solving a certain class of inequality
constrained optimization problem. The proposed system
shows that the steady state solutions x (t) of the dyna-
mic system can be approximated to the optimal solutions
x∗ of the optimization problem on a continuous path as
t→∞. The steepest descent search technique is used to
achieve the intended results.

2. Preliminaries

2.1. Inequality constrained problem
Consider the nonlinear programming problem with in-

equality constraints:
minx∈Rn f (x) ,

s.t. g (x) ≥ 0,
(1)

where f : Rn → R, g : Rn → Rm are C2 functions and
we assume that the feasible set is non-empty.
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By the penalty function methods, the constrained op-
timization problem is transformed into an unconstrained
optimization problem. In the literature, we frequently
see that the following penalty function can be used for
the problem (1),

Ppenalty (g (x)) =

m∑
i=1

min (gi(x), 0) , (2)

where µ > 0 (µ→∞) is an auxiliary penalty variable.
Hence, the solutions of the inequality constrained pro-
blem (1) can be obtained under some conditions from
the following unconstrained optimization problem,

minPpenalty(x, µ) = f(x) + µ

m∑
i=1

min (gi(x), 0)

s.t. x ∈ Rn, (3)
where µ > 0 (µ→∞) is an auxiliary penalty variable.
This result can be expressed briefly in the following the-
orem.
Theorem 1. [5, pp. 404] Let {xk} be a sequence ge-

nerated by the penalty method. Then any limit point of
the sequence is a solution to the constrained problem.

2.2. Hyperbolic penalty function method

The hyperbolic penalty method was first presented by
Xavier in 1982 [18] in order to solve the constrained opti-
mization problem (1). In a similar manner, the hyperbo-
lic penalty methods transform constrained optimization
problem (1) into an unconstrained optimization problem
as follows,

min f(x) +

m∑
i=1

Phyp (gi(x)) . (4)

The second term is the hyperbolic penalty function and
can be written as,

Phyp(y, α, τ) = −
(

1

2
tanα

)
y
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+

√(
1

2
tanα

)2

y2 + τ2, (5)

where α ∈ [0, π/2) and τ ≥ 0. For convenience, the
hyperbolic penalty function can be modelled by the fol-
lowing form:

Phyp(y, λ, τ) = −λy +
√
λ2y2 + τ2, (6)

where λ ≥ 0 (λ→∞) and τ ≥ 0 (τ → 0).
The geometric idea behind the hyperbolic penalty

function can be described briefly as follows. Initially,
when the constraint is violated, the parameter λ increa-
ses; this term goes to infinity in order to apply a penalty
to the violated constraint with the help of the hyperbo-
lic penalty term (6) until the violation is over. In this
manner, it works as a classical exterior penalty function.
On the other hand, when the constraint is feasible, the
parameter τ decreases sequentially to zero. In this way,
the hyperbolic penalty function behaves like an interior
penalty and pushes the iteration point to the boundary
of the feasible region. The graphical representation of
the hyperbolic penalty function can be found in [19].

3. Hyperbolic penalty dynamic system
In this section, we construct the hyperbolic penalty dy-

namic system to solve the inequality constrained optimi-
zation problem (1). The hyperbolic penalty function (6)
is used for the optimization problem (1), and is converted
to the unconstrained optimization problem (4). The nu-
merical solution of problem (4) was investigated by the
following vector differential equation,

dx
dt = −∇f (x)−

m∑
i=1

∇Phyp (gi (x)) ,

dλ
dt = rλ, r > 0,
dτ
dt = −qτ, 0 < p < 1,

(7)

where ∇f (x) and ∇Phyp (gi (x)) are the gradient vec-
tors of the objective function and the hyperbolic penalty
function with respect to x ∈ Rn, respectively. For sim-
plicity, the hyperbolic penalty dynamic system (7) can
be written as

dz

dt
=

 −∇f (x)−
m∑
i=1

∇Phyp (gi (x))

rλ

−qτ

 , (8)

where zT =
(
xT , λ, τ

)
.

Definition 1. A point xe is referred to an equilibrium
point of (8) if it satisfies the right-hand side of Eq. (8).

The Euler discretization scheme is used to find the
stable equilibrium point of the hyperbolic penalty dy-
namic system (8). The following iteration formulas can
be obtained to approximate the solution of (8),

xk+1
i (t) = xki (t) + ∆t

× (−∇xif (x)−
∑m
s=1∇xiPhyp (gs(x))) ,

λk+1 = λk + ∆t (rλ) ,

τk+1 = τk −∆t (qτ) ,

(9)

where ∇xi, i = 1...n is a gradient of a given function with
respect to xi, and ∆t is the step size for every interval.

4. Numerical examples and application

In order to demonstrate the effectiveness of the propo-
sed hyperbolic penalty dynamic system, we test several
examples using our system (8). We also compare the
numerical performance of the proposed dynamic system
with various initial points, both feasible and unfeasible.
Example 1. Consider the following nonlinear pro-

gramming problem [20, Problem No: 12],

minimize f(x) = 0.5x21 + x22 − x1x2 − 7x1 − 7x2,

subject to g(x) = 25− 4x21 − x22 ≥ 0.
(10)

By using the hyperbolic penalty function (6), pro-
blem (10) can be transformed into the unconstrained op-
timization problem as follows,

F (x, λ, τ) =
(
0.5x21 + x22 − x1x2 − 7x1 − 7x2

)
+Phyp (g (x) , λ, τ) .

The corresponding dynamic system from (7) is con-
structed as

dxi

dt = −∇xiF (x, λ, τ) , i = 1...n,
dλ
dt = rλ, dτ

dt = −qτ,
x1(0) = 0, x2(0) = 0.

(11)

where x1(0) and x2(0) are the feasible initial conditions.
By utilizing the Euler discretization scheme (9) with

λ = 10, τ = 0.1, r = 100, q = 0.01 and step size ∆t =
0.0001, the trajectory of the system (11) approaches the
expected optimal solution x∗ = (2, 3) of the optimization
problem (10) (see Figs. 1 and 2).

Fig. 1. Transient behavior xi (i = 1, 2) of the dynamic
system (10).

Example 2. Consider the following nonlinear pro-
gramming problem with inequality constraints [21, Pro-
blem No: 337],

minimize f(x) = 9x21 + x22 + 9x23,

subject to
g1(x) = x1x2 − 1 ≥ 0,

x2 ≥ 1, x3 ≤ 1.

(12)
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Fig. 2. Transient behavior xi (i = 1, 2) of the dynamic
system (10) with ten random initial points.

Fig. 3. Transient behavior xi (i = 1, 2, 3) of the dyna-
mic system (13).

This is a practical problem with an unknown ex-
act solution. The expected solution is x∗ =(
0.5774, 1.732, −0.2026× 10−5

)
.

By using the hyperbolic penalty function (6), we have
the following unconstrained optimization problem,

F (x, λ, τ) =
(
9x21 + x22 + 9x23

)
+

3∑
s=1

Phyp (gs(x), λ, τ) ,

where Phyp is the hyperbolic penalty function. The cor-
responding dynamic system from (7) is defined as

dxi

dt = −∇xiF (x, λ, τ) , i = 1...n,
dλ
dt = rλ, dτ

dt = −qτ,
x1(0) = 1, x2(0) = 1, x2(0) = 1,

(13)

where x1(0), x2(0) and x3(0) are the feasible initial condi-
tions. Utilizing the Euler discretization scheme (9) with
λ = 100, τ = 0.1, r = 10, q = 0.001 and step size

∆t = 0.0001, the trajectory of the system (13) appro-
aches the optimal solution x∗ of the optimization pro-
blem (12) (see Figs. 3 and 4).

Fig. 4. Transient behavior xi (i = 1, 2, 3) of the dyna-
mic system (13) with ten different initial points.

5. Conclusions

In this study, we construct a nonlinear dynamic system
using the hyperbolic penalty function for a certain class
of inequality constrained optimization problems. For this
purpose, the steepest descent search technique is adap-
ted to the dynamic system, and the Euler discretization
scheme is used to find the steady state solution of the
hyperbolic penalty dynamic system. Numerical exam-
ples show that the structure of the proposed dynamic
system is both effective and reliable in solving a class of
inequality constrained optimization problems with vari-
ous initial points.
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