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Recovering Images from PET Camera
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We study here one of the imaging techniques, used in nuclear medicine, called positron emission tomographic
imaging, that provides information about many biological processes that are essential to the functioning of the
organ, being visualized. Our emphasis is given to the application of the maximum entropy image reconstruction
method called “Cambridge MaxEnt Package” for recovering images of the human brain from data obtained by
positron emission tomographic camera.
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1. Introduction

In the last few decades of the century there have been
significant advances in nuclear medicine. In particularly,
when Allen Cormack [1] and Godfrey Hounsfield [2] intro-
duced X-ray computer tomography (CT) independently
in the early 1970s, based on the mathematical founda-
tion of Radon [3], for reconstruction images of an object
from its projections, the field of nuclear medicine was
revolutionized.

The breakthrough development of X-ray CT was made
possible by continuing advances in instrumentation and
computer technologies, which also accelerated the de-
velopment of the multi-dimensional imaging modalities,
that carry a great potential for providing, in addition to
morphologic, the dynamic and functional information on
biochemical and pathophysiological processes or organs
of the human body.

Recent advances in basic molecular and cell biology
have also made us to change in our understanding of di-
seases, which can be defined as alternations in cellular
behaviour, that reflect functional changes, instead of de-
fining it as structural changes. Actually, it is evident that
by the time when pathological conditions are easily vi-
sible either in a conventional CT or the latest scanners,
the underlying biochemical abnormality is usually well
advanced. This is because X-ray CT imaging is mainly
concerned with anatomical structures of body, distinguis-
hing between different components that have different
absorbing power of X-rays.

Nevertheless, the latest scanners can provide radically
improved qualitative diagnostic information, relevant to
a wide range of human diseases but, give limited in-
formation about the functional or physiological state of
the internal organs of human body. In medicine, it is
known that human diseases often occur with no specific
anatomical changes and those seen may be the later ef-
fects of early biochemical process, which have remained
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undetected until the advanced symptoms appear in the
patient.

Therefore, the goal of the radiology specialty of nuclear
medicine is to provide information on the distribution of
a chosen molecule in space inside the human body, so
that an image of its distribution within the body, or a
specific organ, provides information on the functioning
of the body or organ, that is valuable for medical diag-
nosis. For this purpose, PET imaging techniques [4–7],
for measuring concentrations of positron-emitting radi-
oisotope within the tissue of living subjects, have been
developed by researchers from diverse disciplines for the
last decade. Since first introduction of PET to medical
imaging applications in the late 1960’s, it has already
grown into a well-researched, highly evolved field [7–9].

Most of current approaches, to tackle the problem
of reconstruction of isotope concentration distribution,
can be classified into two general categories, namely the
analytical methods [6, 10], which rely on the inversion
of Radon transform, and the iterative approaches [11],
which are based on a statistical description of the physical
problem.

Because of the random nature of the radioactive dis-
integration, the tomographic data are noisy and there-
fore it is straightforward to regard PET reconstruction
as a statistical estimation problem [12–14]. Such ap-
proaches, when reconstructing PET images, require to
introduce modelling of the data statistics and to make
use of some prior information about the PET imaging
system. In this paper, we therefore focus on PET
image reconstruction method, based on Bayesian ap-
proach [13, 18], with maximum entropy prior [16] and
use here a well-known powerful algorithm of “Cambridge
MaxEnt Package” (CMEP) [15] for reconstructing max-
imum entropy PET images. It allows incorporation of
system model and measurement of statistical uncertain-
ties, thus providing a more robust and accurate solution.

2. PET measurement modelling

The physical basis for PET imaging, shown in Fig. 1a,
lies in the fact that a positron produced by a radioactive
nucleus annihilates with an electron to form a pair of
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high energy photons, after traveling very short distance.
The pair of photons travel back to back along a straight
line path. These photon pairs can be detected externally
within a timing window τ by two opposite detectors.

The shaded line of response corresponds to the volume
between the detectors and is defined by cross-sectional
area of the coincidence detectors 1 and 2. C1 and C2

are the single count rates, recorded by detector 1 and 2,
respectively. However, in reality, the coincidence events
may also include those in which two gamma rays originate
from two unrelated position annihilations and those in
which the annihilation photons lose their direction and
energy before they arrive to the detector system.

Actually, the raw data recorded by the PET camera
consist of 106 random coincidence events, which are re-
presented by a pair of coordinate values, one from each
detector. Thus, image reconstruction may then proceed
in two stages. The first stage is to back-project the
raw data. The second stage is to deconvolve the back-
projected data with the point-spread function, shown in
Fig. 1b.

Fig. 1. (a) The physical basis for PET: annihilation of
positron and electron produces a pair of back to back
511 keV photons that are detected by a pair of detectors.
(b) The point-spread function, experimentally obtained
by a “spread” out version of the point source, placed in
the system and reconstructed into an image, which looks
like a Gaussian shaped function with very long tails.

To form a back-projection, the image volume (typi-
cally a cube, 600× 300× 124 mm3) consists of K equally
spaced planes with equal dimensions, each of which is di-
vided into (256 × 128) square elements (pixels). Then,
a simple back projected data is obtained by a compu-
ter program, which forms a line of response between a
pair of coordinate-values, recorded as raw data and in-
crements the count in the pixel where this line passes in
each back-projection plane.

3. Mathematical problem of PET system

In PET, the back projected image D = {di}
(i = 1, ...,M) is composed of M pixels. Rij is propor-
tional to the probability that a photon pair, emitted

from pixels j is detected by the tube i and is called the
point-spread function or transfer matrix with a dimen-
sion (M ×N). Then, the image formation equation can
be implemented in the form:

di =

N∑
j=1

Rijfj , (i = 1, 2, 3, ...,M) , (1)

where the point spread function R, illustrated in Fig. 1b,
is assumed to be modelled correctly, e.g., sampling effects
and scattering contributions are properly incorporated.
Given the back-projected data D and the knowledge of
R, the mathematical problem is to estimate f .

Mathematically, such an inverse problem is an ill po-
sed one, making the solution non-trivial and ambiguous:
very small variations in the experimental data D lead
to very large variations in the solution f and generally
requires some kind of regularization in order to generate
physically plausible solutions.

This can be done in a variety of ways [14], but a com-
monly used idea to realize regularization techniques with
statistical motivation is the Bayesian model, using the
posterior probability density function (PDF) p(f |D) , gi-
ven according to Bayes formula;

p(f |D ) =
p(D |f)p(f)

p(D)
∝ p(D |f)p(f) , (2)

where the term p(D) may be considered necessary only
for normalization purposes, so that it is often written
as a proportionality, leaving out the denominator. The
Bayesian approach has the advantage that it allows for
incorporating additional prior information on f , via the
a-priori PDF p(f), into the reconstruction process. Ac-
cording to Skilling [16], the prior PDF p(f) for an un-
normalised positive additive image f is proportional to
exp (αS (f,m)), where the entropy S(f,m) of the requi-
red map f , relative to an initial map m, is given by

S(f,m) =

N∑
j=1

fi −mj − fj log
(
fj
mj

)
. (3)

α, denoted as a regularization parameter, is initially un-
determined, so the solution is conditional on two quanti-
ties, α and m. For a Poisson-distributed event counting
experiment, the conditional probability of the whole data
set is

p (D |f ) =
1∏N

i=1

√
2π σi

exp

(
−χ

2(f)

2

)
, (4)

where χ2(f) is usually used to measure the misfit:

χ2(f) =

M∑
i=1

1

σ2
i

di − N∑
j=1

Rijfj

2

, (5)

where σi is the standard deviation of the noise in the ith
pixel. Then the posterior PDF in Eq. (2) turns into the
following form:

p (f |D ) ∼ exp

(
αS(f ,m)− 1

2
χ2 (f)

)
. (6)

The computationally interesting Bayesian approach,
called the maximum a-posteriori probability (MAP)
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estimation, consists of computing an estimate f of the
unknown object by maximizing the a-posteriori PDF
p(f |D) , given in Eq. (6). Various numerical algorithms
for solving this non-linear optimisation problem have
been suggested by various researchers [13, 14]. Howe-
ver, we shall only consider here a complicated, but highly
successful scheme, developed by Skilling and collabora-
tors [15, 17], wherein a maximum is repeatedly sought
not along a single search direction, but in a small dimen-
sional subspace, spanned by vectors that are calculated
at each landing point. The subspaces basis vectors are
chosen in such a way, as to avoid directions leading to
negative values. One of the most successful choices is the
three-dimensional subspace spanned by the vectors with
components given by

e1 = f (∇S) ,
e2 = f

(
∇χ2

)
,

e3 = |∇S|−1
f
(
∇2χ2

)
f (∇S)

−
∣∣∇χ2

∣∣−1
f
(
∇2χ2

)
f
(
∇χ2

)
.

(7)

Here the entropy metric (−∇∇S) is used to define the
lengths

|∇S| =

(∑
fi

(
∂S

∂fi

)2
) 1

2

,

∣∣χ2
∣∣ = (∑ fi

(
∂χ2

∂fi

)2
) 1

2

. (8)

With these three search directions, quadratic models for
S(f,m) and χ2(f) are constructed in the subspace given
in Eq. (6) and then the algorithm proceeds by determi-
ning coefficients of the search vector δf = x1e1 +x2e2 +
x3e3, that gives the maximum of S(f,m), subject to
the constraint χ2(f) ≤ N , by implicitly adjusting α, so
that the constraint is satisfied. More precisely, in each
iteration, S(f,m) and χ2(f) are projected onto a small
dimensional subspace where S(f,m) attains its maxi-
mum, while χ2(f) ≤ N is satisfied. Finally, the current
f is moved to the new location by f̂ = f + δf , while the
updated f̂ needs to be protected against stray on nega-
tive values. The iteration is repeated until

TEST =
1

2

∣∣∣∣ ∇S||∇S|| − ∇χ2

||∇χ2||

∣∣∣∣2 < ε, (9)

where ε is a preassigned value.

4. Recovering PET images

The concentration of a chemical compound, labeled
gallium isotope (68Ga) with the half-life of 68 minutes,
in the brain was measured by using the PET camera.
Data was provided by the positron emission group at the
School of Physics and Space Research at the University
of Birmingham. What is recorded by the PET camera is
a pair of coordinate values, one from each detector, which
represents an annihilation event. By using these recorded
pairs of coordinate values, the back-projected images of

brain, shown in Figs. 2a and 3a, were constructed. Ima-
ging or data analysis problems of PET camera is only
considered here, however it is known that such studies
provide quantitative functional information, which helps
to quantify normal human brain physiology and highlig-
hts the changes in metabolism and function caused by
cerebral disease.

Fig. 2. (a) The back-projected data. (b) The recon-
structed image formed by the CMEP.

The images, shown in Figs. 2a and 3a, are the secti-
onal images of the brain, that are colour-coded to show
differences in the level of activity from point to point.
The number of random coincidence events collected by
the PET camera distinguishes these two sets of data, ta-
ken from the central plane. The back projected data in
Fig. 3a was therefore obtained by discarding 10% of in-
formation from the back-projected data, given in Fig. 2a.
It is expected that with more counts collected, the better
will be the resulting image quality.

The CMEP requires a specification of a model image
and the variance of the noise in the data. The model
image m represents our prior state of knowledge or ig-
norance about the original image. It is usually taken to
be uniform, but the use of a non-uniform model image
m allows us to introduce partial correlations across the
image we want to infer. Therefore, at the kth iteration
we estimated the model mk in the following form:

mk = Bfk, (10)
where B is a blurring matrix, which averages the densi-
ties over neighbouring pixels (3× 3). The uncertainty in
the data, associated with each pixel, varies from pixel to
pixel according to the number of photons counted. The-
refore, the variance σ2

i of the noise was estimated in the
form:

σ2
i =

{
di if di 6= 0

1 if di = 0
, i = 1, ...,M. (11)

A fictional photon is added here to avoid the discon-
tinuity arisen from the ith component of data di. The
CMEM was run on an IBM3090 computer. After approx-
imately 30 iterations the convergence criterion (TEST ≤
0.01, χ2 (f) ≤ 16384) was satisfied.

The colour-coded images of the reconstructed densi-
ties are shown in Figs. 2b and 3b. The red areas in
the pictures indicate high levels of activity; dark blue
or white areas indicate little or no activity in those brain
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structures. It is also observed that these images have
almost similar brain structures, even though the data
shown in Fig. 3a contain less information than the one in
Fig. 2a. As expected, CMEP requires large consumption
of CPU time on the computer, because it is non-linear
and iterative.

Fig. 3. (a) The back-projected data. (b) The image
reconstructed by the CMEP.

3. Conclusions

In this work, CMEP is used to reconstruct PET images
with Poisson noise model, including partial correlations.
It is based on a subspace of several search directions,
instead of a line search, and the noise level constraint over
the likelihood function is controlled, so that the positivity
during each subspace search is directly enforced. These
features make the algorithm attractive for solving high
dimensional nonlinear problems.

Overall, PET reconstructions indicate that the appli-
cation of the maximum entropy method leads to consi-
derably improved reconstruction, especially in the case
where the data are very noisy and the sampling is in-
complete. Along with improving the reconstruction met-
hods for solving the basic PET reconstruction problem,
there are many novel challenges, facing this field, and
new advances in PET instrumentation require hybrid re-
constructions algorithms to reach their potential impro-
vements in signal to noise ratio. Clinical importance of
PET imaging will continue to increase.
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