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1. Introduction

The quaternions were first introduced by Hamilton
in 1843. The theory of Frenet frames for a quaternio-
nic curve and dual quaternionic curve has been studied
and developed by several researchers in this field [1–3, 5].
In 1987, the Frenet formulae for quaternionic curves in
E3 and E4 were given by Bharathi and Nagaraj [5], and
then many studies have been published on the quater-
nionic curves, using this study. Some of these Frenet
formulas, in D3 and D4 dual spaces, had been defined by
Sivridağ [3]. Characterization of quaternionic Lorentz
manifolds was given in 1999 by Karadağ [6], and Fre-
net formulas for quaternionic curves in semi-Euclidean
space have been defined by Çöken and Tuna’s study [2],
in which they gave inclined curves, harmonic curvatures
and some characterizations for a quaternionic curve in
the semi-Euclidean spaces E4

2 . After that, in 2009, for-
mulas for dual-split quaternionic curves were obtained by
Çöken et al [1]. And then, in 2011, Gök et al. gave a new
kind of slant helix in Euclidean 4-space E4 and obtained
some characterizations for the quaternionic slant helices
in terms of the harmonic curvatures.

The main goal of this paper is to define slant helix
for dual quaternionic curves in D4. Here, by using the
idea similar to that of Gök and et al. [5], we show that a
dual quaternionic curve is a dual quaternionic slant helix
if and only if H ′2 − K̄H1 = 0, where {H1, H2} denotes
the harmonic curvature functions and K̄ is the principal
curvature function of the dual quaternionic curve.

2. Preliminaries

Let QH denotes a four dimensional vector space over
the field H of characteristic grater than 2. Let ei, (1 ≤
i ≤ 4) denote a basis for the vector space. Let the rule of
multiplication on QH be defined on ei, (1 ≤ i ≤ 4) and
extended to the entire vector space by distributivity as
follows.
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The set of the real quaternions is defined by QH =
{q|q = ae1 + be2 + ce3 + de4; a, b, c, d ∈ R, e1, e2, e3 ∈
R3, e4 = 1, 1 ≤ i ≤ 3}, where ei×ei = −1, ei×ej = ek =
− (ej × ei), 1 ≤ i ≤ 3 and (ijk) is an even permutation
of (123).

The multiplication of two real quaternions p and q is
defined by p × q = SpSq + SpVq + SqVp + h(Vp, Vq) +
VpΛVq for every p, q ∈ QH . Here we have used the inner
and cross products in Euclidean space R3. For a real
quaternion q = ae1+be2+ce3+d ∈ QH the conjugate αq
of q is defined by αq = −ae1− be2− ce3 +d. This defines
the symmetric, real valued, non-degenerate, bilinear form
h as follows:

h(p, q) =
1

2
[p× αq + q × αp] .

And then, the norm of real quaternion q is denoted by
‖q‖2 = |h(q, q)| = |a2 + b2 + c2 + d2|.

The concept of a spatial quaternion will be used
throughout our work. q is called a spatial quaternion,
whenever q + αq = 0. It is a temporal quaternion, whe-
never q − αq = 0 [2, 4, 5].

A dual number has the form a + ξa∗ where a and a∗
are real numbers and ξ = (0, 1) is the dual unit having
property ξ2 = 0. The set of all dual numbers forms a
commutative ring over the real number field and is deno-
ted by Veldkamp [7].
ID3 dual vector space (ID-module) can be written as

ID3 = {(A1, A2, A3) : A1, A2, A3 ∈ ID}
Similarly, ID4 dual vector space can be written as

ID4 = {(A1, A2, A3, A4) : A1, A2, A3, A4 ∈ ID. A dual
quaternion Q is written as Q = Ae1 + Be2 + Ce3 + D.
As a consequence of this definition, a dual quaternion
Q can also be written as Q = q + ξq∗, ξ2 = 0, where
q = ae1 + be2 + ce3 + d and q∗ = a∗e1 + b∗e2 + c∗e3 + d∗

are, respectively, real and dual quaternion components.
Let p and p∗ be two real quaternions. We define the dual
quaternion by P = p + ξp∗, and denote the set of dual
quaternions by QID, such that

QID = {P |P = Ae1 +Be2 + Ce3 +D;

A,B,C,D ∈ ID, e1, e2, e3 ∈ R3,

where ei× ei = −1, ei× ej = ek = − (ej × ei), 1 ≤ i ≤ 3.
The multiplication of two dual quaternions P and Q is

defined by:

(900)
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P ×Q = p× q + ξ(p× q∗ + p∗ × q),

where P = p + ξp∗ and Q = q + ξq∗ and × shows the
dual quaternion multiplication. It is clear that

P ×Q = SPSQ + SPVQ

+SQVP− < VPVQ > +VP ΛVQ,

where <,> is the inner-product and Λ is the cross-
product on D3. The conjugate of P = SP +VP is denoted
by αP = SP −VP . For ∀ P,Q ∈ QID, we define the sym-
metric dual-valued bilinear form H : QID × QID → ID
by H(P,Q) = 1

2 [P × αQ+Q× αP ].
The following results may be obtained:
1) For ∀ P,Q of QID we have H (P,Q) = h (p, q) +

ξ [h (p, q∗) + h (p∗, q)], where h is the symmetric real-
valued bilinear form,

2) If P = Ae1 + Be2 + Ce3 + D, then H (P, P ) =
A2 +B2 + C2 +D2,

3) ∀ P,Q ∈ QID scalar part and vector part of P are
SP = 1

2 (P + αP ), VP = 1
2 (P − αP ).

The concept of a dual spatial quaternion will be used
throughout our work. P is called a dual spatial qua-
ternion whenever P + αP = 0. It is a dual temporal
quaternion whenever P − αP = 0. Let P and Q be two
dual spatial quaternions. If H(P,Q) = 0, then P and Q
are H-ortogonal [1, 3, 6].
Theorem 2.1. Let us consider the smooth curve

β ⊂ ID3 given by β(s) = A(s)e1 + B(s)e2 + C(s)e3.
Let s be the paramerter along the smooth curve β and
dual tangent vector T of β has unit length. Then Frenet
equations are

T ′ = KN1, N
′
1 = −KT +RN2, N

′
2 = −RN1, (1)

where K = k + ξk∗ and R = r + ξr∗ are the principal
curvature and torsion of β, respectively. Moreover, k and
r are the principal curvature and torsion of the curve in
R3, which is determined by the real part of β, respecti-
vely [3].
Theorem 2.2. Let a curve β̄ in ID4 be given by
β̄ (s) = D (s) +A (s) e1 +B (s) e2 + C (s) e3,

where s ∈ [0, 1] and D, A, B, C ∈ ID. Let s be the
paramerter along the smooth curve β̄ and dual tangent
vector T̄ of β̄ has unit length. The Serret-Frenet formu-
lae for a curve β̄ in ID4 may be derived with the help
of the Serret-Frenet formulae of a certain curve β in ID3

and given by
T̄ ′(s) = K̄N̄1, N̄

′
1(s) = KN̄2 − K̄T̄ ,

N̄ ′2(s) = −KN̄1 + (R− K̄)N̄3,

N̄ ′3(s) = −(R− K̄)N̄2,

where {T̄ , N̄1, N̄2, N̄3, K̄,K,R− K̄} gives the Frenet ap-
paratus for the curve β̄, such that K and R are the
principal curvature and torsion of the curve β in ID3,
respectively [3].
Definition 2.3. Let β̄ : I → QID4 be an arc-

lengthen dual quaternionic curve with nonzero curvatu-
res, and {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} denotes the Frenet

frame of the curve β̄ in ID4. {H1, H2} denotes the har-
monic curvature functions of the quaternionic curve β̄. If
β̄ : I → QID4 is a quaternionic N̄3 slant helix (see [5] for
real quaternionic curves)

H (N3 (s) , u) = cosΦ,

cosΦ = cos (ϕ+ εϕ∗) = const, ϕ 6= (π/2). (2)

3. Dual quaternionic N̄3 slant helices
and their harmonic curvatures functions

In this section, we give some characterizations for dual
quaternionic N2 and N̄3 slant helices in ID3 and in ID4

with respect to harmonic curvature functions of dual qua-
ternionic curve.
Definition 3.1. β : I → QID3 regular dual qua-

ternionic curve is given by arc-length paramerter s and
{T (s), N1(s), N2(s)} denotes the Frenet frame of the dual
quaternionic curve β. We denote β as a dual quaternio-
nic N2 slant helix in ID3 if the last Frenet vectors field
N2 makes a constant angle Φ with a fixed direction u,
namely,

H (N2 (s) , u) = cosΦ,

cosΦ = cos (ϕ+ εϕ∗) = const, ϕ 6=
(π

2

)
, (3)

where u is a constant and unit vector in QID3 for ∀s ∈ I.
Definition 3.2. Let γ : I → R3 be a real quaternionic

curve, such that
γ(s) = γ1(s)e1 + γ2(s)e2 + γ3(s)e3.

β : I → QID3 , β(s) = γ1(s)e1 + γ2(s)e2 + γ3(s)e3 +
ξ(γ∗1(s)e1+γ∗2(s)e2+γ∗3(s)e3) or β(s) = A(s)e1+B(s)e2+
C(s)e3; A(s), B(s), C(s) ∈ ID, obtained from γ, is such,
that {T (s), N1(s), N2(s)} is the Frenet trihedron in the
point β (s) of the curve β and let u = u0 + ξu∗0 be a unit
and constant vector. Then, β′ (s) = T0 (s) + ξT ∗0 (s) =
T (s), αβ′(s) = −T0(s) − ξT ∗0 (s), u = u0 + ξu∗0, αu =
−u0−ξu∗0 (u is a dual spatial quaternion). Thus, uT (s) ∈
QID3 , H(u, T ) = h(u0, T0) + ξ[h(u0, T

∗
0 (s)) + h(u∗0, T0)].

H(u, T ) = cosΦ = cos(ϕ+ εϕ∗). Since β is an inclined
curve, we have cosϕ = const. If ϕ∗ is a constant, we have
H(u, T ) = cosΦ = const.
Definition 3.3. Let β : I → QID3 be a dual spa-

tial quaternionic inclined curve, given by arc-length pa-
rameter s. Curvatures at the point β(s) of curve β are
K (s) = k (s)+ ξk∗(s), R(s) = r(s)+ ξr∗(s). In that case
H is harmonic curvature, it is

H(s) =
R(s)

K(s)
. (4)

Theorem 3.1. Let β : I → QID3 be a regular dual
quaternionic curve in ID3 with arclength parameter s
and let {T (s), N1(s), N2(s)} denote the Frenet trihedron
in the point β(s) of the curve β. If the curve β is a dual
spatial quaternionic N2 slant helices with u = u0 + ξu∗0,
as its axis, then we have H : I → ID

H (T (s) , u) = H (s)H (N2 (s) , u) = H cosΦ,

cosΦ = cos(ϕ+ εϕ∗), ϕ 6= (π/2), (5)
where H is a dual harmonic curvature function of the
curve β.
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Proof. Let ϕ 6= π/2 be a constant angle between
the quaternion u and the last Frenet vector of the curve
β quaternionic N2-slant helix in QID3 . Thus, we have
H (N2 (s) , u) = cosΦ = const.

Here, by differentiating with respect to s, we get
H(N ′2(s), u) = 0. With the help of Eq. (1), we obtain
that H(N1(s), u) = 0 and H(N ′1(s), u) = 0. Here, using
Eq. (1),

H (T (s) , u) =
R

K
H (N2 (s) , u) ,

and then Eq. (4) gives us H (T (s) , u) =
H (s)H (N2 (s) , u) = H cosΦ, ϕ 6= π/2.
Theorem 3.2. Let β : I → QID3 be a regular dual

quaternionic curve in ID3 with arclength parameter s
and let {T (s), N1(s), N2(s)} denote the Frenet trihedron
in the point β(s) of the curve β. If the curve β is a dual
spatial quaternionic N2 slant helices in ID3, the axis of
β is

u = (H(s)T (s) +N2(s))H(N2(s), u), (6)
where H(s) is a dual harmonic curvature function of the
curve β.
Proof. If the axis of dual spatial quaternionic N2 slant

helix β is u, then we can write
u = λ1T + λ2N1 + λ3N2.

Then, by using Theorem (3.1.) λ1 = H(s)H(N2(s), u),
λ2 = H(N1(s), u) = 0, λ3 = H(N2(s), u). Thus it is easy
to obtain u = (H(s)T +N2)H(N2(s), u).
Definition 3.3. Let β : I → QID3 be a regular dual

quaternionic curve in ID3 with arclength parameter s
and {T (s), N1(s), N2(s)} denotes the Frenet trihedron of
the curve β and H denotes the dual harmonic curvature
function at the point β(s). The dual quaternion

D = H(s)T (s) +N2(s) (7)
is called a Darboux dual quaternion of the dual spatial
quaternionic N2 slant helix β in ID3.
Theorem 3.3. Let β : I → QID3 be a regular dual

quaternionic curve in ID3 with arclength parameter s
and {T (s), N1(s), N2(s)} denotes the Frenet trihedron of
the curve β and H denotes the dual harmonic curvature
function of the curve β. Then the curve β is a spatial
dual quaternionic N2 slant helix in ID3 if and only if D
is a constant dual spatial quaternion.
Proof. (⇒) Let β be a dual spatial qua-

ternionic N2 slant helix in ID3 and u be the
axis of β. From Theorem (3.2.), we have u =
(H (s)T (s) +N2(s))H (N2 (s) , u) = D cosΦ, where Φ
and u are constant. Thus, D is a constant dual spatial
quaternion.

(⇐) In contrast, suppose that D is a constant vec-
tor field, we have ‖D‖2 = H(D,D) is constant. By
using Theorem (3.2.), we can write ‖u‖2 = ‖D cosΦ‖2 =
cos2 Φh (D,D).

Since u is a unit dual quaternion and ‖D‖ is constant,
we have cosΦ = 1

‖D‖ = (HN2 (s) , u) is constant. There-
fore, β is a dual spatial quaternionic N2 slant helix.

Theorem 3.4. Let β : I → QID3 be a dual spatial
quaternionic curve, given by arc-length parameter s. Let
H(s) be harmonic curvature and {T (s), N1(s), N2(s)} be
the Frenet frame at the point β(s). If the curve β is
a spatial dual quaternionic N2 slant helix in ID3, then
H2(s) is constant.
Proof. Let β be a spatial dual quaternio-

nic N2 slant helix. Since the axis of β is u =
(H (s)T (s) +N2(s)) cosΦ unit dual spatial quaternion,
‖u‖2 = 1. Hence, we have ‖u‖2 = |H(u, u)| = |(u×αu)|.
With Eq. (6), by taking ‖T (s)‖ = ‖N1 (s)‖ = ‖N2 (s)‖ =
1 and ‖u‖ = 1 into consideration, H2 (s) = tan2 Φ =
const is obtained.
Corollary 3.5. Let β : I → QID3 be a dual spatial

quaternionic curve with arc length parameter s and non-
zero curvatures {K,R}. Then, curve β is a dual spa-
tial quaternionic N2 slant helix in ID3 if and only if(

R(s)
K(s)

)′
= 0.

Proof. It is obvious from Theorem (3.3.)
Definition 3.4. Let β̄ : I → QID4 be an arc-lengthen

dual quaternionic curve with nonzero curvatures K̄, K,
R−K̄ and {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} denotes the Frenet
frame of β̄. We denote β̄ as a quaternionic N̄3-slant helix
in QID4 if the last unit vector field N̄3 makes a constant
angle φ with a fixed direction u, that is, H(N̄3, u) =
cosφ, φ = const, where u is a unit and constant dual
quaternion, which is the axis of β for all s ∈ I.
Theorem 3.6. Let β : I ⊂ R → QID3 be a re-

gular dual spatial quaternionic N2 slant helix, such that
β(s) = A(s)e1+B(s)e2+C(s)e3, β̄ (s) = D (s)+A (s) e1+
B (s) e2 + C (s) e3 is obtained from β. Then β̄ is a dual
quaternionic inclined curve in QID4 .
Proof. Let β̄ : I → QID4 be an arc-lengthen dual

quaternionic curve and u be a unit and constant dual
spatial quaternion, which is the axis of β̄, such that
{T̄ (s), N̄1(s), N̄2(s), N̄3(s)} be Frenet apparatus at the
point β̄(s) of β̄. Then we have

H
(
T̄ (s) , u

)
=

1

2
(T0 × αu0 + u0 × αT0)

+
1

2
ε[(T0 × αu∗0 + u∗0 × αT0)

+(T ∗0 × αu0 + u0 × αT ∗0 )],

H(T̄ , u) = h(u0, T0) + ξ[h(u0, T
∗
0 (s)) + h(u∗0, T0)] =

cosϕ± ϕ∗ sinϕ = cosφ = const.

Thus, β̄ is a quaternionic inclined curve in QID4 .
Definition 3.5. Let β̄ : I → QID4 be an arc-lengthen

dual quaternionic curve with nonzero curvatures K, K̄,
R − K̄. In that case harmonic curvature functions in
terms of N̄3 of β̄ are defined by Hi : I → ID

H0 = 0, H1 =
R− K̄
K

,

H2 = − 1

K̄
H ′1 = − 1

K̄

(
R− K̄
K

)′
, (8)

where K̄ is the principal curvature, K is the torsion of
β̄, (R− K̄) is the bi-torsion of β̄.
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Theorem 3.7. Let β̄ : I → QID4 be a dual quaterni-
onic curve, given by arc-length parameter s and u be a
unit and constant quaternion of QID4 . {H1, H2} deno-
tes the harmonic curvature functions of the quaternionic
curve β̄. If β̄ : I → QID4 is a quaternionic N̄3 slant helix,
with u as its axis, then we get

H
(
T̄ , u

)
= H2H(N̄3, u), H(N̄1, u) = H1H(N̄3, u),

H(N̄2, u) = H0H(N̄3, u), H(N̄3, u) = cosφ. (9)
Proof. Let ϕ 6= π/2 be a constant angle between

the quaternion u and the last Frenet vector of the curve
β̄ quaternionic N̄3-slant helix in QID4 . Thus, we have
H(N̄3(s), u) = cosφ, for all s ∈ I. Then by differenti-
ating the equation above, with respect to s, we obtain
H
(
N̄ ′3 (s) , X

)
= 0 or from Serret-Frenet formulas of β̄,

we get
(
R− K̄

)
H
(
N̄2 (s) , u

)
= 0, where

(
R− K̄

)
6= 0,

then
H
(
N̄2 (s) , u

)
= 0 = H0H(N̄3, u). (10)

By taking the derivative of Eq. (10) and using the Frenet
formulas, we obtain H

(
N̄ ′2 (s) , u

)
= 0,

H(KN̄1 + (R− K̄)N̄3, u) = 0,

and from Eq. (8), we have
H(N̄1, u) = H1H(N̄3, u). (11)
If derivative of the last equation with respect to s is

taken,
H
(
N̄ ′1 (s) , u

)
= H ′1H(N̄3, u)

is found. Here, by using Eq. (10) and Definition (3.5.)
H(T (s), u) = H2H(N̄3, u). (12)

Thus, with the Eqs. (10)–(12) the proof is completed.
Corollary 3.8. Let β̄ : I → QID4 be a dual quater-

nionic curve given by arc-length parameter s and u be a
unit and constant dual quaternion of QID4 . {H1, H2}
denotes the harmonic curvature functions of the qua-
ternionic curve. If β̄ : I → QID4 is a dual quaterni-
onic N̄3-slant helix, the axis of β̄ is u = (H2T̄ (s) +
H1N̄1 (s)+N̄3 (s))H(N̄3, u) or u = (H2T̄ (s)+H1N̄1 (s)+
N̄3 (s)) cosφ.
Proof. If u is the axis of a quaternionic N̄3-slant helix

in QID4 , then we can write u = λ1T̄ (s) + λ2N̄1 (s) +
λ3N̄2 (s) + λ4N̄3 (s) and then by using Theorem (3.7.),
we get

λ1 = H(T̄ (s), u) = H2h(N̄3(s), u),

λ2 = H(N̄1(s), u) = H1h(N̄3(s), u),

λ3 = H(N̄2(s), u) = H0h(N̄3(s), u),

λ4 = H(N̄3(s), u).

Thus we easily obtain that u = (H2T̄ (s) + H1N̄1 (s) +
N̄3 (s)) cosφ.
Definition 3.6. Let β̄ : I → QID4 be a dual qua-

ternionic curve given by arc-length parameter s. Such
that {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} is Frenet apparatus and
harmonic curvatures {H1, H2}. The dual quaternion
D = H2T̄ (s) + H1N̄1 (s) + N̄3 (s) is called the Darboux
dual quaternion of the dual quaternionic N̄3-slant helix β̄.

Theorem 3.9. Let β̄ : I → QID4 be a dual qua-
ternionic curve, given by arc-length parameter s. Such
that {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} is Frenet apparatus and
harmonic curvatures {H1, H2}. Then β̄ is a dual quater-
nionic N̄3-slant helix if and only if D is a constant dual
quaternion.
Proof. (⇒) Suppose that β̄ is a dual quater-

nionic N̄3-slant helix in QID4 and u is the axis
of β̄. From Corollary (3.8.), we have that u =(
H2T̄ (s) +H1N̄1 (s) + N̄3 (s)

)
cosφ = D cosφ, where φ

and u are constant and hence D is a constant dual qua-
ternion.

(⇐) LetD be a constant dual spatial quaternion. From
Definition (3.6.) and Corollary (3.8.), we can write

u = D cosφ. (13)

By derivating Eq. (13) with respect to s, we get
u′ = D′cosφ+D(cosφ)

′ from the hypothesis, D is a con-
stant dual spatial quaternion and D(cosφ)

′
= 0, where

D 6= 0 or we get cosφ = const. We can define a
unique axis of the quaternionic N̄3 slant helix, where
h(N̄3(s), u) = h(N̄3(s), D cosφ) = cosφh(N̄3(s), D).
From Definition (3.6.), we get h

(
N̄3 (s) , u

)
= cosφ.

Thus, u is a constant dual quaternion and β̄ is a qua-
ternionic N̄3 slant helix in QID4 .
Theorem 3.10. Let β̄ : I → QID4 be a dual qua-

ternionic curve given by arc-length parameter s. Such
that {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} is Frenet apparatus and
harmonic curvatures {H1, H2}. Then β̄ is a quaternionic
N̄3 slant helix if and only if

H ′2 − K̄H1 = 0. (14)

Proof. (⇒) If we differentiate D along the curve β̄,
we get D′ = H ′2T̄ (s)+H2T̄

′ (s)+H ′1N̄1 (s)+H1N̄
′
1 (s)+

N̄ ′3 (s). The Serret-Frenet formulas and Eq. (8) give us
D′ = (H ′2 − K̄H1)T̄ . (15)

Since β̄ is a quaternionic N̄3 slant helix, D is a con-
stant dual quaternion. Thus, we can write D′ = 0 or(
H ′2 − K̄H1

)
= 0.

(⇐) If (H ′2 − K̄H1) = 0, we can easily see that D′ =
0 or D is a constant dual quaternion, and then from
Theorem (3.9.), we have that β̄ is a dual quaternionic
N̄3-slant helix in QID4 .
Corollary 3.11. Let β̄ : I → QID4 be an arc-lengthen

dual quaternionic curve with nonzero curvatures K, K̄,
R − K̄ Let {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} and {H1, H2} be
the Frenet frame and the harmonic curvature functions
of the quaternionic curve, respectively. Then β̄ is a qua-
ternionic N̄3-slant helix if and only if[

1

K̄

(
R− K̄
K

)′]′
+ K̄

(
R− K̄
K

)
= 0. (16)

Proof. (⇒) Let β̄ be a quaternionic N̄3-slant helix in
Q4

ID, then from Theorem (3.10.) we have
(
H ′2 − K̄H1

)
=

0. By using Definition (3.5) we have [ 1
K̄

(R−K̄
K )

′
]
′

+

K̄(R−K̄
K ) = 0.
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(⇐) We suppose that the equation
[

1
K̄

(
R−K̄
K

)′]′
+

K̄(R−K̄
K ) = 0 holds, then from Theorem (3.10.) and

Definition (3.5.), it is obvious that β̄ is a quaternionic
N̄3-slant helix in QID4 .
Theorem 3.12. Let β̄ : I → QID4 be a dual qua-

ternionic curve with nonzero curvatures K, K̄, R − K̄.
If β̄ is a quaternionic N̄3-slant helix, then the following
condition is satisfied, H2

1 + H2
2 = tan2 φ = const, where

φ is the constant angle between the last Frenet vector N̄3

and a constant unit dual quaternion u.
Proof. Let β̄ be a real quaternionic N̄3-

slant helix. Since the axis of β̄ is u =(
H2T̄ (s) +H1N̄1 (s) + N̄3 (s)

)
cosφ unit dual quater-

nion, ‖u‖2 = 1. Hence, using Eq. (3) we have
‖u‖2 = H (u, u) = u× αu =

H2
2 cos2φ

(
T̄ (s)× αT̄ (s)

)
+H2

1 cos2φ
(
N̄1 (s)× αN̄1 (s)

)
+(N̄3 (s)× αN̄3 (s))cos2φ

+H2H1

(
T̄ (s)× αN̄1 (s) + N̄1 (s)× αT̄ (s)

)
cos2φ

+H2(T̄ (s)× αN̄3 + N̄3 × αT̄ (s))cos2φ

+H1(N̄1 (s)× αN̄3 (s) + N̄3 (s)× αN̄1 (s))cos2φ,

where by using the properties of dual quaternion product
we can easily write that ‖u‖2 = 1 = (1 +H2

1 +H2
2 )cos2φ

and then we get H2
1 +H2

2 = tan2φ = const.

4. Conclusions

We give some characterizations of dual quaternionic
N2 and N̄3 slant helices in ID3 and in ID4 in terms of
their dual quaternionic harmonic curvatures. Besides,
by using Theorem (3.10.) and Definition (3.5.) the
derivatives of harmonic curvatures are as follows:[

H ′1
H ′2

]
=

[
0 −K
−K̄ 0

][
H1

H2

]
.
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