Proceedings of the 46th International School and Conference on the Physics of Semiconductors "Jaszowiec" 2017, Szczyrk Electrical Transport Properties of $Yb_{8-x}Y_xV_2O_{17}$ (x = 0, 2, 8)

B. SAWICKI^{*a*}, M. PIZ^{*b*}, E. FILIPEK^{*b*}, T. GROŃ^{*a*,*} AND H. DUDA^{*a*}

^aUniversity of Silesia, Institute of Physics, Uniwersytecka 4, 40-007 Katowice, Poland

^bWest Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department

of Inorganic and Analytical Chemistry, al. Piastów 42, 71-065 Szczecin, Poland

The UV-vis-NIR and electrical properties of $Yb_{8-x}Y_xV_2O_{17}$ for x = 0, 2, and 8 were investigated. The band energy gap of 2.6 eV determined for $Yb_6Y_2V_2O_{17}$ (x = 2) and comparable for the remaining compounds with x = 0 and 8 is characteristic for insulators. Low electrical conductivity with a characteristic minimum shifting to higher temperatures from 322, via 360 to 370 K in the sequence x = 0, 2 and 8, which decreases with increasing content of ytterbium was observed. Temperature dependence of thermoelectric power showed n-p transition at 410 and 467 K for x = 0 and 2, respectively, and *n*-type conductivity for x = 8, indicating mainly *n*-type electrical conductivity. A breakdown voltage of 26 V/mm is mainly observed for the I-V characteristics at 400 K and showing a varistor-like behavior.

DOI: 10.12693/APhysPolA.132.363

PACS/topics: 72.20.Pa, 72.80.Ga, 75.20.-g

1. Introduction

Complex oxide systems based on rare earth metal oxides are of great interest for creation of new materials for production e.g. of plasma displays, electroluminescent diodes, or fluorescence lamps [1-5].

Preliminary studies of the ternary oxides V₂O₅-Yb₂O₃-Y₂O₃ system have shown that, in one of its sections, i.e. in the system Yb₈V₂O₁₇-Y₈V₂O₁₇, a previously unknown phase of the formula $Yb_6Y_2V_2O_{17}$ is formed [6]. The new phase $Yb_6Y_2V_2O_{17}$ was obtained by heating a mixture of the three oxides, i.e. Yb_2O_3 , V_2O_5 and Y_2O_3 in a molar ratio (3:1:1) in air, between temperatures 873 and 1823 K [6]. The X-ray powder diffractogram showed that $Yb_6Y_2V_2O_{17}$ is isostructural with $Yb_8V_2O_{17}$ which crystallizes in the triclinic systems [7]. This result is contrary to the literature data [8]. According to the results of our research the elementary cell parameters of new phase Yb₆Y₂V₂O₁₇ which were refined with the use of the program REFINEMENT are as follows: a = 0.8972 nm, b = 0.9292 nm, c = 0.9824 nm, $\alpha = 77.668^{\circ}, \ \beta = 106.301^{\circ}, \ \gamma = 116.291^{\circ}$ [7].

In the present study the electrical and optical properties of $Yb_{8-x}Y_xV_2O_{17}$ for x = 0 and 8 [7–9] as well as for a new phase (x = 2) were carried out.

2. Experimental details

The powder diffraction patterns of the samples obtained were recorded with the aid of the diffractometer EM-PYREAN II (PANalytical, Netherlands) using Cu K_{α} with graphite monochromator. Ultraviolet-visible and near-infrared (UV-vis-NIR) diffuse reflectance spectra were recorded at room temperature and in the wavelength range of 200–900 nm using a JASCO-V670 spectrophotometer equipped with an integrating sphere. In order to determine the energy gap, E_g , these spectra were transformed using the Kubelka–Munk function: $F(R) = (1-R)^2/2R$, where R is reflectancy [%] [10, 11]. The sample morphology was observed on SEM images. Scanning electron microscopy study was performed on JSM-1600, JEOL, Japan with an X-ray energy dispersive analysis — EDX (ISIS-300, Oxford).

The electrical conductivity $\sigma(T)$ and the I-V characteristics have been measured with the aid of the DC method in the temperature range 300–400 K using a KEITH-LEY 6517B Electrometer/High Resistance Meter. The thermoelectric power S(T) was measured in the temperature range 300–600 K with the aid of a Seebeck Effect Measurement System (MMR Technologies, Inc., USA). For the electrical measurements, the powder samples were compacted in a disc form (10 mm in diameter and 2 mm thick) using a pressure of 1.5 GPa and then they were sintered during 2 h at 1073 K. The electrical and thermal contacts were made by a silver lacquer mixture (Degussa Leitsilber 200).

3. Results and discussion

Figure 1 shows a fragments of diffraction pattern (XRD) of $Yb_8V_2O_{17}$ (Fig. 1a), $Yb_6Y_2V_2O_{17}$ (Fig. 1b) and $Y_8V_2O_{17}$ (Fig. 1c) obtained in the context of this paper, which are almost identical to that shown in [7].

The SEM image of new polycrystalline phase is presented in Fig. 2.

The morphology of $Yb_{8-x}Y_xV_2O_{17}$ for x = 2(Yb₆Y₂V₂O₁₇) crystallites is very similar to those of the matrix *i.e.* Yb₈V₂O₁₇ [7]. They look like polygons of irregular shapes and different sizes, varying from 0.5 to 9 μ m (Fig. 2).

The UV-vis-NIR measurements and the Kubelka– Munk transformation [10,11] (Fig. 3) have shown that all phases of $Yb_{8-x}Y_xV_2O_{17}$ are insulators for the energy gap of 2.6 eV for $Yb_6Y_2V_2O_{17}$ (x = 2), whose value is comparable to that of other samples (x = 0 and 8).

^{*}corresponding author; e-mail: Tadeusz.Gron@us.edu.pl

Fig. 1. Fragments of XRD powder patterns of the: a) $Yb_8V_2O_{17},\,b)\;Yb_6Y_2V_2O_{17},\,c)\;Y_8V_2O_{17}.$

Fig. 2. SEM image of Yb₆Y₂V₂O₁₇.

The compounds under study showed low electrical conductivity, $\sigma(T)$, with a characteristic minimum shifting to higher temperatures from 322, via 360 to 370 K in the sequence x = 0, 2 and 8 (Fig.4). It is noteworthy that the electrical conductivity decreases with increasing content of ytterbium. The temperature dependence of thermo-

Fig. 3. Plots of $(F(R)h\nu)^2$ vs. the energy of the incident photon $h\nu$ for Yb₆Y₂V₂O₁₇. E_g is the band gap energy.

power, S(T), showed n-p transition at 410 and 467 K for x = 0 and 2, respectively, and *n*-type conductivity for x = 8, indicating mainly *n*-type electrical conductivity (Fig. 5) probably due to predominant contribution of oxygen vacancies. In this case, the thermoelectric power increases as the content of ytterbium increases.

TABLE I

The voltage at the point of breakthrough V [V] and breakdown voltage V_b [V/mm] of $Yb_{8-x}Y_xV_2O_{17}$ for the specimen thickness of 2 mm at 300 K and 400 K.

x	Compound	V	V_b	V	V_b
		300 K		400 K	
0	$Yb_8V_2O_{17}$	_	-	60	30
2	$Yb_6Y_2V_2O_{17}$	92	46	44	22
8	$\mathrm{Y_8V_2O_{17}}$	—	_	54	27

Fig. 4. The electrical conductivity $(\ln \sigma)$ vs. reciprocal temperature T^{-1} for $Yb_{8-x}Y_xV_2O_{17}$ (x = 0, 2 and 8).

Fig. 5. The thermoelectric power S vs. temperature T for $Yb_{8-x}Y_xV_2O_{17}$ (x = 0, 2 and 8).

The most interesting observation concerns the nonlinear I - V characteristics (Figs. 6–8) for all the phases under study, similar to back-to-back Zener diodes but with much greater current and energy handling capabilities [12]. A breakdown voltage $V_b \sim 26$ V/mm (Table I) is mainly observed for the I-V characteristics at 400 K and it is almost twice lower than the value of V_b at 280 and 300 K, showing a variator-like behavior. From the physics research of variators follows that the non-linearity I-V characteristics in this case may be due to the phenomenon of grain-boundary where a barrier to majority charge carriers exists in the depletion layers of the adjacent grains [12].

Fig. 6. The I-V characteristics at 300 and 400 K for Yb₈V₂O₁₇.

Fig. 7. The $I\!-\!V$ characteristics at 280 and 400 K for $\rm Yb_6Y_2V_2O_{17}.$

Fig. 8. The I-V characteristics and 400 K for $Y_8V_2O_{17}$.

4. Conclusions

We have investigated the UV-vis-NIR spectroscopy and electrical properties of $Yb_{8-x}Y_xV_2O_{17}$ phases for x = 0, 2 and 8. All samples turned out to be insulators with the band energy gap of 2.6 eV, low electrical conductivity mainly of *n*-type with a characteristic minimum shifting to higher temperatures in the sequence x = 0, 2 and 8 which decreases with increasing content of ytterbium and the breakdown voltage of 26 V/mm which is mainly observed for the I-V characteristics at 400 K and showing a varistor-like behavior. The solid solutions under study can be considered as varistors and for applications as the electronic power systems

Acknowledgments

This work was partly supported by Ministry of Science and Higher Education (Poland) and funded from Science Resources: No. 1S-0300-500-1-05-06 and No. DS-518-10-020-3101.

The authors are also grateful to the team workshop of the Institute of Physics (University of Silesia) for providing practical and technical assistance with a KEITH-LEY 6517B Electrometer/High Resistance Meter device.

References

- R.B. Pode, A.M. Band, H.D. Juneja, S.J. Dhoble, *Phys. Status Solidi* 157, 493 (1996).
- [2] J. Chen, F. Guo, N. Zhuang, J. Lan, X. Hu, S. Gao, J. Cryst. Growth 243, 450 (2002).
- [3] V. Buissette, A. Huignard, T. Gacoin, J.P. Boilot, P. Aschehoug, B. Viana, *Surf. Sci.* 532, 444 (2003).
- [4] H.Y. Xu, H. Wang, T.N. Jin, H. Yan, *Nanotechnology* 16, 65 (2005).
- [5] Z. Xia, D. Chen, M. Yang, T. Ying, J. Phys. Chem. Solids 71, 175 (2010).
- [6] M. Piz, E. Filipek, in: Proc. 11th Int. Seminar on Thermal Analysis and Calorimetry to the memory of Prof. St. Bretsznajder, Ptock (Poland), 2016, p. 122.
- [7] M. Piz, E. Filipek, J. Therm. Anal. Calorim. 130, 277 (2017).
- [8] H. Brusset, R. Mahe, J.P. Laude, Bull. Soc. Chim. Fr., 495 (1973).
- [9] J. Lewin, J. Am. Ceram. Soc. 50, 381 (1967).
- [10] P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931).
- [11] P. Urbanowicz, M. Piątkowska, B. Sawicki, T. Groń, Z. Kukuła, E. Tomaszewicz, J. Eur. Ceram. Soc. 35, 4189 (2015).
- [12] C. Li, J. Wang, W. Su, H. Chen, W. Wang, D. Zhuang, *Physica B* **307**, 1 (2001).