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Magnetocaloric properties of the spin-1/2 Ising model on a decorated square lattice in a transverse magnetic
field are investigated by the use of a generalized decoration-iteration transformation, which establishes a rigorous
mapping correspondence with the zero-field spin-1/2 Ising model on a square lattice. The temperature dependence
of the entropy, the isothermal entropy change and the adiabatic temperature change display anomalous singular
behavior in a vicinity of a second-order phase transition. The large inverse magnetocaloric effect can be found in
the isothermal entropy change within the temperature interval, which is delimited by the critical temperatures at
zero and non-zero transverse fields.
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1. Introduction

The magnetocaloric effect (MCE) refers to the heat-
ing or cooling of a magnetic material when subjected to
a variation of magnetic field. The phenomenon of MCE
was firstly observed by Warburg in 1881 [1]. MCE can
be characterized by means of the isothermal magnetic
entropy change ∆Siso, which occurs when the magnetic
field is applied isothermally [2]. A significance of the
MCE goes with its potential utilization for a magnetic
refrigeration through the process of adiabatic demagne-
tization [3]. The magnetic materials with the large MCE
are therefore of technological interest with regard to their
cooling capability either at room or low temperatures [4].
An enhanced MCE can be normally observed in the vicin-
ity of the phase transitions [5].

In the present work we will examine the magnetocaloric
properties, namely, the entropy as a function of temper-
ature, the isothermal entropy change and the transverse-
field dependence of the temperature of the spin-1/2 Ising
model on a decorated square lattice, which is one of the
few exactly solvable two-dimensional models exhibiting a
second-order phase transition.

2. Model and method

Let us consider the spin-1/2 Ising model on a decorated
square lattice in a transverse magnetic field (see Fig. 1),
which can be defined through the following Hamiltonian:

Ĥd = −J
4N∑
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where µz
k = ±1/2 represent the nodal Ising spins, Ŝz

i
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and Ŝx
i represent the relevant spatial components of the

standard spin-1/2 operator of the decorating atoms. The
parameter J is the Ising interaction between the nearest-
neighbor nodal and decorating spins, while the second
term Ω accounts for Zeeman’s energy of the decorating
atoms in a transverse magnetic field. Finally, N denotes
the total number of atoms of the original lattice.

Fig. 1. A part of the decorated square lattice. The
black circles denote lattice position of the nodal spin-
1/2 atoms and the gray circles schematically represent
lattice position of the spin-1/2 decorating atoms.

The phase diagram, thermodynamics, longitudinal and
transverse magnetizations of the transverse Ising model
on a decorated square lattice defined through the Hamil-
toninan (1) was comprehensively studied by the use of
a generalized decoration-iteration transformation, which
establishes a precise mapping equivalence with an effec-
tive spin-1/2 Ising model on a simple square lattice with
the know exact solution due to Onsager [6]. From the rig-
orous mapping correspondence one may consequently de-
rive exact expressions for all physical quantities of inter-
est for the transverse Ising model on a decorated square
lattice as well. The readers interested in detail of rel-
evant calculation procedure are referred to Refs. [7, 8].
In the present work we will focus our attention on mag-
netocaloric properties, specifically on MCE close to the
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second-order phase transition. The entropy as a function
of temperature can be obtained from Eq. (8) of Ref. [8]
and the isothermal entropy change can be calculated as
a difference of the entropy at non-zero and zero mag-
netic field ∆Siso = S2(T,Ω 6= 0) − S1(T,Ω = 0) at the
constant temperature.

3. Results and discussion

Let us start our discussion with typical tempera-
ture dependences of the molar entropy per one spin
Sd (J K−1 mol−1), which are displayed in Fig. 2 for a
few different values of the transverse magnetic field. The
entropy monotonously increases with increasing tempera-
ture at zero as well as non-zero transverse fields, whereas
the most pronounced changes can be found close to a
second-order phase transition point accompanied with a
weak singular behavior of the type (T − Tc) ln |T − Tc|
(open circles in Fig. 2). The temperature, at which the
curve at non-zero transverse field crosses the zero-field
curve (red solid line) represents a crossover tempera-
ture, since it determines the change between the con-
ventional and inverse MCE. At higher transverse fields
(Ω/J ≥ 1.0) the entropy is higher than the zero-field
entropy below the crossover temperature. Contrary to
this, the entropy at higher transverse fields is lower than
the zero-field entropy above the crossover temperature.
It is worthwhile to remark that the entropy reaches at
high transverse fields (e.g. Ω/J = 4.0) a constant value
Sd = Rm1/3 ln 2 ≈ 1.921 J K−1 mol−1 (Rm is univer-
sal gas constant), which is in agreement with the disor-
dered nature of the nodal Ising spins and the full align-
ment of the decorating spins into the transverse magnetic
field. On the other hand, two crossover temperatures
can be detected in Fig. 2 at lower transverse fields like
for instance Ω/J = 0.5. The entropy is lower than the
zero-field entropy below the first crossover temperature
kBT/J ≈ 0.26 and above the second crossover tempera-
ture kBT/J ≈ 0.33, while it becomes higher within the
temperature range in between both crossover tempera-
tures. Owing to this fact, one observes a double transi-
tion between the conventional and inverse MCE.

MCE can be even better characterized through the
isothermal entropy change −∆Siso in response to a vari-
ation of the applied transverse field. Temperature de-
pendence of the isothermal temperature change is shown
in Fig. 3 at three different values of the transverse-field
change ∆Ω . The crosses on relevant isothermal curves
mark weak singularities of the zero-field entropy of the
type (T −Tc) ln |T −Tc| occurring at the critical temper-
ature kBTc/J ≈ 0.327, while open circles denote similar
weak singularities of the entropy located at critical points
of second-order phase transitions at the upper transverse
fields Ω/J = 0.5, 1.0, and 2.0, respectively. The positive
isothermal entropy change −∆Siso > 0 implies the con-
ventional MCE, while the negative isothermal entropy
change −∆Siso < 0 serves in evidence of the inverse
MCE. It can be seen from Fig. 3 that the large inverse

Fig. 2. The molar entropy as a function of temperature
at a few values of the transverse magnetic field.

Fig. 3. The temperature dependence of the isother-
mal entropy change at three different values of the
transverse-field change. Thin dotted line at −∆Siso = 0
is guide for eyes only.

MCE occurs within the temperature interval Tc(h 6= 0) <
T < Tc(h = 0), which is delimited by both critical tem-
peratures. The inverse MCE gradually increases and
shifts to lower temperatures upon strengthening of the
transverse-field change ∆Ω/J . While the inverse MCE
initially dominates over the low-temperature region at
higher changes of the transverse field (∆Ω/J = 1.0 and
2.0), the smaller transverse-field change ∆Ω/J = 0.5
leads to the small conventional MCE at relatively low
temperatures below the crossover temperature in accor-
dance with Fig. 2. On the other hand, one can ob-
serve a maximum of the conventional MCE in a high-
temperature region bounded from below by a zero–field
critical temperature, whereas its height and locus in-
creases with increase of the transverse field.

Another important characteristics of MCE represents
an isentropic change of temperature induced upon varia-
tion of the transverse magnetic field, which is displayed
in Fig. 4. As one can see, there is a highest density
of isentropic lines around the line of second-order phase
transitions, which is depicted in Fig. 4 as thick broken
line. This result is in accordance with the aforementioned
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Fig. 4. A density plot of the molar entropy in the
field-temperature plane. The broken line indicates
monotonous decline of the critical temperature with in-
crease of the transverse field.

behavior of the entropy discussed at Fig. 2. It can be ob-
served from Fig. 4 that the temperature rapidly decreases
during the process of the adiabatic demagnetization at
relatively high entropies until it tends towards some con-
stant finite value. On the other hand, the temperature
increases with decrease of transverse field at relatively
low entropies.

4. Conclusion

In this work, we have investigated the magnetocaloric
properties of the exactly solvable spin-1/2 Ising model on
a decorated square lattice in a transverse magnetic field.
The temperature dependences of the entropy have been
examined for a few different values of the transverse mag-
netic field. The MCE was demonstrated either through
the positive or negative isothermal entropy change. It
has been evidenced that the large inverse MCE accompa-
nied with the negative isothermal entropy change −∆Siso

emerges in a vicinity of the second-order phase transi-
tions. Another important aspect of MCE represents the
transverse-field dependence of the temperature under the
adiabatic condition. The most dense isentropes are sit-
uated in a close vicinity of the continuous phase transi-
tions.
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