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We consider the problem of optimal estimation of a state of a quantum system interacting with the Bose
field being in a mixture of the vacuum and coherent state. The system and electromagnetic field are described by
making use of quantum stochastic unitary evolution. We derive stochastic master equation using Gardiner and
Collet’s input-output theory and the concept of cascade systems. To find the stochastic evolution of the system
conditioned on the result of the quadrature measurement of the output field, we extend the compound system by
an ancilla driven by the vacuum and generating the desired non-classical state of light.
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1. Introduction

The concept of optimal quantum state estimation in
the framework of quantum stochastic calculus was devel-
oped by Belavkin, Barchielli and their co-workers [1, 2].
In the model the Bose field disturbs the free evolution of a
quantum system, but it also enables an indirect and con-
tinuous in time observation of the quantum system. The
filtering equation describes the evolution of the quantum
system conditioned on the results of the continuous in
time measurement of the output Bose field (the field af-
ter interaction with the system). The filtering theory
provides us with the mathematical tools which allow to
study the problem of optimal excitation of quantum sys-
tems by wave packet traveling in space as well as the
problem of storing and retrieving information in quan-
tum systems in an efficient way. Derivation of the filter-
ing equation for the field in the vacuum state one can
find, for instance, in [1] and for the squeezed Gaussian
state in [3]. The filtering for non-Gaussian states such as
continuous-mode single photon state or continuous-mode
cat states was studied, for instance, in [4].

In the paper we present derivation of the filtering equa-
tion for the Bose field taken in a mixture of vacuum and
coherent state using the concept of enlarging the system
by ancilla being a source of non-classical signal. It should
be stressed that our model of signal generator is the only
theoretical tool which serves for derivation of the filtering
equations for the non-classical light.

2. Input-output model of filtering

Let us consider a quantum system (system S) interact-
ing with the Bose field [5]. We assume that the unitary
operator, Ut, describing the evolution of the whole system
(system S plus the Bose field) satisfies the Itô quantum
stochastic differential equation (QSDE) [2, 6]:
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dUt =

[
LS dB

†
t − L

†
S dBt −

(
i

~
HS + 1

2
L†SLS

)
dt

]
Ut,

Ut=0 = I,

where LS is a coupling operator acting in the Hilbert
space of S and HS is the Hamiltonian of S. Henceforth,
we put ~ = 1. The Hilbert space of the Bose field is
symmetric Fock space having a continuous tensor prod-
uct structure i.e. h = h[0,t)⊗ h[t,+∞) [2, 6]. The operator
Ut acts trivially in h[t,+∞) and [Ut, dBt] = [Ut, dB

†
t ] = 0.

Continuous-mode coherent state in h is defined as:

|α〉 =
−→
T exp

{∫ +∞

0

α(t)dB†t − α(t)∗dBt

}
|vac〉,

where
−→
T stands for the chronological ordering operator

and |vac〉 is the vacuum state. Note that
−→
T exp

{∫ t

0

α(s)dB†s − α(s)∗dBs

}
|vac〉 =

|α[0,t)〉 ⊗ |vac[t,∞)〉,

so the continuous-mode coherent state has the factoriza-
tion property
|α〉 = |α[0,t)〉 ⊗ |α[t,+∞)〉.

The mean values of the increments dBt, dB†t and their
products for the coherent state are
〈α|dBtα〉 = α(t)dt, 〈α|dBtdB

†
tα〉 = dt,

〈α|dB†t dBtα〉 = 0.

The operators Bt, B
†
t refer to the field before interaction

with S and they are called the input processes, whereas
Bout

t = U†tBtUt, B
out†
t = U†tB

†
tUt describe the field after

the interaction with S, and they are called the output
processes [5, 6].
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3. Reduced dynamics of quantum system
coupled to the Bose field in a mixture of vacuum

and coherent state

If the Bose field is taken in the state
ρfield = p|vac〉〈vac|+ (1− p)|α〉〈α|

with p ∈ (0, 1], then the reduced dynamics of the system
S is given by the density operator [2]:

ρ(t) = pρ00(t) + (1− p)ρ11(t),

where the matrices ρ00(t) and ρ11(t) satisfy the differen-
tial equations

ρ̇00(t) = − i [HS , ρ
00(t)] + LSρ

00(t)L†S

− 1
2
{L†SLS , ρ

00(t)},

ρ̇11(t) = − i [HS , ρ
11(t)] + LSρ

11(t)L†S

− 1
2
{L†SLS , ρ

11(t)}+ α(t)
[
ρ11(t), L†S

]
+α∗(t)

[
LS , ρ

11(t)
]

with the initial conditions: ρ00(0) = ρ11(0) = ρ(0).

4. Model of generation of the Bose field in a
mixture of vacuum and coherent state

As a generator of the field in the mixture of the vac-
uum and coherent state we consider a two-level system
which interacts with the Bose field in the vacuum state
and we assume that the evolution of the compound sys-
tem (the two-level system plus the Bose field) is given by
the unitary operator, Ũt satisfying the equation

dŨt =
(
LAdB†t − L

†
AdBt − 1

2
L†ALAdt

)
Ũt,

Ũt=0 = I,

where the coupling operator has the form
LA = α(t)|1〉〈1|. (1)

We indicate the upper and ground states of the two-level
system, respectively, by |1〉 and |0〉. Now one can check
that if the initial state of the compound system is given
as
|ψ0〉 = (c0|0〉+ c1|1〉)⊗ |vac〉,

then the compound system evolves according to the for-
mula

Ut|ψ0〉 = c0|0〉 ⊗ |vac〉+ c1|1〉 ⊗ |α[0,t)〉 ⊗ |vac[t,+∞)〉.

In the limit t→ +∞, we obtain
lim

t→+∞
Ut|ψ0〉 = c0|0〉 ⊗ |vac〉+ c1|1〉 ⊗ |α〉.

Thus the Bose field after interaction with the ancilla up
to the time t (the output field) is in the state

%outfield(t) = |c0|
2 |vac[0,t)〉〈vac[0,t)|+ |c1|

2 |α[0,t)〉〈α [0,t)|.

5. Master equation for cascaded system

We consider the cascaded system consisting of the an-
cilla (the two-level system) and the system S. We assume

that the cascaded system is driven by the Bose field in
the vacuum state. The idea of cascaded system was de-
scribed, for instance, in [5]. When we omit a time shift
due to a travelling between the ancilla and S, we get the
master equation for the extended system (the system S
plus the ancilla) of the form

˙̃ρ(t) = LS ρ̃(t) + LAρ̃(t) +
[
LAρ̃(t), L

†
S

]
+
[
LS , ρ̃(t)L

†
A

]
, (2)

where
LS ρ̃ = −i[HS , ρ̃] + LS ρ̃L

†
S − 1

2
{L†SLS , ρ̃}

and
LAρ̃ = LAρ̃L

†
A − 1

2
{L†ALA, ρ̃}.

We assume that initially the extended system is in the
state

ρ̃(t = 0) = ρ(0)⊗ ρA(0), (3)
where

ρA(0) = |c0|2|0〉〈0|+ c0c
∗
1|0〉〈1|+ c∗0c1|1〉〈0|

+|c1|2|1〉〈1|.

Now by taking the partial trace over the Hilbert space of
ancilla, hA, we get from (2) the equation

˙̃ρS(t) = LS ρ̃S(t) +
[
TrhA

(LAρ̃(t)) , L
†
S

]
+
[
LS ,TrhA

(
ρ̃(t)L†A

)]
(4)

for the density matrix
ρ̃S(t) = TrhA

ρ̃(t)

describing the reduced dynamics of S. One can check
that for the coupling (1) and the initial state (3), we ob-
tain from (4) the set of two differential equations of the
form

˙̃ρ00S (t) = LS ρ̃
00
S (t),

˙̃ρ11S (t) = LS ρ̃
11
S (t) + α(t)

[
ρ̃11S (t), L†S

]
+α∗(t)

[
LS , ρ̃

11
S (t)

]
for the matrices ρ̃00S (t) = 〈0|ρ̃(t)|0〉 and ρ̃11S (t) =
〈1|ρ̃(t)|1〉. Initially we have ρ̃00S (0) = |c0|2ρ(0), ρ̃11S (0) =
|c1|2ρ(0) and

ρ̃S(t) = ρ̃00S (t) + ρ̃11S (t). (5)
Let us notice that if |c0|2 = p and |c1|2 = 1− p this pro-
cedure gives the same reduced evolution of S as before
when we considered S interacting with the Bose field pre-
pared in the mixture of the vacuum and coherent state.

6. Trajectories for the system driven by the field
generated by ancilla

The quantum filtering equation for a system coupled
to the Bose field in the vacuum state is well known and
we can write it easily for our extended system consisting
of ancilla and S. The filtering equation for the extended
system and for the quadrature measurement of the out-
put field has the form
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dρ̂(t) ={
LS ρ̂(t) + LAρ̂(t) + [LAρ̂(t), L

†
S ] + [LS , ρ̂(t)L

†
A]

}
dt

+

{
(LS + LA) ρ̂(t) + ρ̂(t)

(
L†S + L†A

)
−Ktρ̂(t)

}
dW (t),

where Kt = Tr[(LS + L†S + LA + L†A)ρ̂(t)], dW (t) =
dY (t) − Ktdt is the innovation Wiener process, and
dY (t) = dBout

t + dBout†
t . Note that averaging our fil-

ter over all possible trajectories (〈dW 〉 = 0), we obtain
the dynamics given by Eq. (2). Now by taking the par-
tial trace over the Hilbert space of ancilla, we obtain the
filter for the system S. Thus the conditional state of S
is given as

ρ̂S(t) = ρ̂00S (t) + ρ̂11S (t),

where
ρ̂00S (t) = 〈0|ρ̂(t)|0〉, ρ̂11S (t) = 〈1|ρ̂(t)|1〉.

One can check that the matrices ρ̂00S (t), ρ̂11S (t) satisfy the
stochastic differential equations

dρ̂00S (t) = LS ρ̂
00
S (t)dt

+
{
LS ρ̂

00
S (t) + ρ̂00S (t)L†S −Ktρ̂

00
S (t)

}
dW,

dρ̂11S (t) = {LS ρ̂
11
S (t) + α(t)

[
ρ̂11S (t), L†S

]
+α∗(t)

[
LS , ρ̂

11
S (t)

]
}dt

+{LS ρ̂
11
S (t) + ρ̂11S (t)L†S

+ρ̂11S (t)(α(t) + α∗(t))−Ktρ̂
11
S (t)}dW,

with ρ̂00S (0) = |c0|2ρ(0), ρ̂11S (0) = |c1|2ρ(0).

7. Conclusions

Our solution is equivalent to the filter derived in [4]
and it can be easily generalised to the case of a mixture
of any number of coherent states. The main restriction of
our model is the fact that we cannot consider as an input
a superposition of coherent states because the ancilla is
not a source of such states. One can find the filtering for
the counting process using the same procedure.
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