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1. Introduction

The phase-space formulation of the electron dynam-
ics in the condensed matter is well established kinetic
method describing transport phenomena in the sys-
tems [1]. Originally this method was based on the classi-
cal equations of statistical physics, and their applications
depend on an actual physical situation. However, none of
these equations is suitable for a description of the trans-
port properties of nanoscale nanodevices in which the
quantum phenomena play primary role. In some sense,
the nanosystems can be regarded as a training ground for
an observation these phenomena and testing a variety of
concepts associated with them. To meet these expecta-
tions, the quantum generalisation of the kinetic method
can be based on the density operator and its equation of
motion in the mixed position-momentum representation
proposed by Weyl and Wigner [2]. In this representation,
the phase space acquires new properties which lead to a
loss of the commutative property, and the dynamical vari-
ables defined over the space form the non-commutative
algebra. This observation suggests that the position and
momentum are mutually dependent variables.

In this report we present results of our studies con-
cerning the position-momentum correlations of the con-
duction electrons in a simple resonant-tunelling nanosys-
tem. We investigate the influence of the scattering pro-
cesses which destroys the phase coherence of the tunelling
electrons through the double-barrier nanostructure on
the considered correlations between these two dynamical
variables. For this purpose, we solve the quantum kinetic
equation for the Wigner distribution function (WDF)
within the relaxation time approximation and determine
the symmetrical correlation function of the first order as
a function of the relaxation time for different points at
the current–voltage characteristics.
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2. Theory

The Weyl transform of the electronic density operator
ρ(x, x′) defines the Wigner function [2]:
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which is commonly called the quasi-distribution function.
In contrast to the classical distribution functions, this
function can take negative values in some regions of the
phase-space. We emphasize that the coarse graining pro-
cedure of the WDF over cells ∆x∆p� 2π~ in the phase-
space diminishes the negative values and the classical dis-
tribution function fcl(x, p) is recovered [3]:∫
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From the mathematical point of view, the negative val-
ues of the WDF can be regarded as a consequence of the
Weyl transform which “forces” the off-diagonal elements
of the density matrix to the resulting distribution func-
tion [4]. On the other hand, this property of the WDF
can be also explained in terms of the quantum interfer-
ence between correlated pieces of the WDF which occupy
different regions of the phase space [5]. Hence, we can
conclude that the WDF comprises the mutually depen-
dent quantum correlations between the momentum and
position states of the electrons. In spite of the fact that
the WDF can be negative, the expectation value of any
dynamical variable can be calculated in the same manner
as the average value in the classical statistical mechanics,

〈A〉 =

∫
dxdpAW (x, p)f(x, p), (3)

where AW (x, p) is a real function obtained by the Weyl
transform of the operator that represents a dynamical
variable. According to Eq. (3), we can introduce a gen-
eral formula for a quantitative measure of the extent of
the correlation of the two dynamical variables [6]:
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Cnm = 〈xnpm〉 − 〈x〉n〈p〉m. (4)
In the particular case when n = m = 1, the quantity
given by Eq. (4) is reduced to the symmetrical correla-
tion function of the first order that is the main subject
of our interest.

The quantum kinetic equation within the relaxation
time approximation satisfied by the WDF has the
Boltzmann-like form, namely
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+

1
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τ
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where the wave vector k is related to the momentum p
via the de Broglie formula: p = ~k, m∗ is the effective
mass of conduction electron, f0(x, k) is the equilibrium
WDF, and τ is the relaxation time due to the scattering
processes taking place inside the nanodevice. In turn,
the drift term in Eq. (5) has the non-local form, and the
integral kernel W (x, k) is given by the formula
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,

(6)
where U(x) is the total potential energy of the conduc-
tion electrons. It is interesting to note that the first order
expansion of the total potential energy into the Taylor se-
ries around x reduces Eq. (5) to the Boltzmann equation.

Because the equation for the WDF contains the first
order derivative with respect to the position variable, the
inflow boundary conditions proposed by Frensley are ap-
plied [7]:
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= fR(k),
(7)

where the supply function fL(R)(k) is taken in the fol-
lowing form [8]:

fL(R)(k) =
m∗kBT

π~2

× ln

(
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))
, (8)

and E(k) is the quadratic dispersion relation, T is the
temperature, µL(R) is the electrochemical potential of
the left (L) or right (R) contact, and the contacts are
separated by a distance of Lx. The difference between
electrochemical potential of the contacts, eV = µL−µR,
generates an uniform electric field E = V/Lx along the
nanostructure. As a result the electronic current flowing
through the nanosystem depends on the scattering mech-
anisms which are specified by the relaxation times. The
values of the current are determined as the first moment
of the WDF, according to the formula
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which stems from the general expression for the expecta-
tion value (3).

3. Results and discussion

In the first step of our studies, Eq. (5) with the
given boundary conditions (7) is numerically solved for
the nanosystem displayed in Fig. 1 at the temperature
T = 77 K. The computational grid with Nx = 133 mesh
points for the space coordinate x, and Nk = 150 points
for the wave vector k is used, chosen accordingly to the
restrictions on the minimum momentum resolution im-
posed by the uncertainty principle [9].

Fig. 1. The potential energy profile in the double-
barrier resonant tunneling nanosystem under the bias
voltage. Coordinate x is measured along the growth
axis of the layers. The contacts doped with donors are
separated by the GaAs spacer layers from the nanosys-
tem which consists of the quantum well with GaAs layer
sandwiched between two Al0.3Ga0.7As barrier layers.

Fig. 2. The current–voltage characteristics of the
double-barrier resonant tunneling diode for three dif-
ferent values of the relaxation time.

As a result of these computations, the typical I–V
characteristics of the double-barrier resonant tunneling
diode was obtained, cf. Fig. 2.

In this way, we demonstrated that an increase of the
intensity of the scattering processes causes a decrease
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of the electronic current in the first positive differen-
tial resistance region and the negative differential re-
sistance one where the quantum phenomena, i.e., tun-
nelling and quantum interference give the main contribu-
tion to the I–V characteristics. Hence we conclude that
the position-momentum correlations are stronger in these
two regions of the characteristics than in the second pos-
itive differential resistance region which is determined by
the thermal transport over the barriers. Therefore we de-
cided to investigate the influence of the relaxation time on
the symmetrical correlation function C11(τ) at the first
positive differential resistance region of the I–V charac-
teristics. Based on the results shown in Fig. 3, we con-
clude that the increase of the intensity of the scattering
processes reduces the initial position-momentum correla-
tions of the electronic states in the considered nanosys-
tem. This observation is closely related to the crossover
from the non-Markovian to the Markovian regime of
the electronic transport. The decrease of the position-
momentum correlations significantly influences the quan-
tum interference, and the phase coherence of the conduc-
tion electrons decays.

Fig. 3. The relaxation time dependence of the sym-
metrical correlation function of the first order at selected
points of the current–voltage characteristics.

Apart from the symmetrical correlation function
C11(τ), we also determine the phase portrait of the
double-barrier resonant nanosystem in the phase space
driven by the bias voltage for the selected values of the re-
laxation time. The result is presented in Fig. 4. The pairs
of expectation values of the electron position 〈x〉 and
the wave vector 〈k〉, calculated for the subsequent volt-
age values form characteristic loops in the phase space.
Starting from V = 0, the momentum increases reaching
a maximum, then begins to decrease and finally starts in-
creasing again. Such loop-like trajectory is in agreement
with the I–V characteristics from Fig. 2, since the cur-
rent and momentum are directly proportional. The area
of loops increases for longer relaxation times, because
in the positive differential resistance region 〈x〉 increases
slower for larger τ .

Fig. 4. The phase portrait obtained from the expecta-
tion values 〈x〉 and 〈k〉 found for subsequent values of
the applied bias voltage for several different relaxation
times.

4. Conclusions

We have applied the phase-space quantum mechan-
ics based on the Wigner distribution function to the
study of the position-momentum correlations of the elec-
tronic states in the double-barrier resonant nanosystem.
We have demonstrated that the symmetrical correlation
function of the first order, which is the simplest mea-
sure of the considered correlations, is a negative definite
monotonically decreasing function of the relaxation time
that depends on the differential resistance region in the
current–voltage characteristics.
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