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For an open quantum system we assume that we are able to set the system’s environment temperature. We
fix the time interval and let the system (further referred as the probing system) to evolve during this time in two
different temperatures. We make a process tomography of the resulting dynamics (quantum channels ε1, ε2 related
to the temperatures T1 and T2 respectively). We calculate then the values of α-fidelities for the pair of channels. We
derive an inequality between the experimental data and the partition function of environment (hence the spectrum
of the environment). If the inequality is not satisfied, it implies that our assumption about the spectrum of the
environment is wrong. Notice that there is no dependence on the interaction terms neither on the Hamiltonian
of the probing system. We show the power of this method in the following example. Consider a two-level atom
passing the one-mode vacuum. We do not know the Hamiltonian of the atom (the probing system) neither the
interaction mechanism. We would like to determine the frequency of the vacuum. We will show that wide range
of frequencies are forbidden by the inequality.
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1. Introduction

The Shannon entropy of a state S(p) = −
∑
i pi log2 pi

is a measure of information contained in the state. The
Kulback–Leiber divergence S(p‖q) =

∑
i pi log2(pi/qi) is

a (non-symmetrical) measure of distance between two
states, namely it tells how surprised we are by the mea-
suring result if we assume a distribution p, but the source
is producing symbols with respect to a distribution q (or
how much more bits on average a codeword for a sym-
bol will have if the code is optimised with respect to the
distribution q, but the source produces symbols due to
p).

There is one-parameter family of entropies generalising
the Shannon entropy called the Rényi entropies defined
as:

Hα(p) =
1

1− α
log2

∑
i

pαi ,

where α ∈ (0,∞) \ 0. One has Hα→1 = S. The
corresponding divergences are defined as Hα(p‖q) =
1

α−1 log2
∑
i:qi>0 p

α
i q

1−α
i and are called the Rényi diver-

gencies of order α.
The Rényi entropies are easily generalised to the

quantum case: Hα(%) = 1
1−αTr%

α. It approaches the
von Neumann entropy when α → 1. Due to non-
commutativity of quantum states, there are at least two
ways of generalisation of the Rényi divergences to the
quantum case: the non-symmetric version Hα(%‖σ) =

∗corresponding author; e-mail: gniewko@fizyka.umk.pl

1
α−1 log2 Tr

(
%ασ1−α) [1] and the symmetrised one

Hα(%‖σ) = 1
α−1 log2 Tr

((
σ

1−α
2α %σ

1−α
2α

)α)
[2]. We have

focused on the second one.
It is useful to consider closely related quantites called

α-fidelities defined as Fα(%‖σ) = Tr
((
σ

1−α
2α %σ

1−α
2α

)α)
.

Observe that F1/2 is the usual (Uhlmann) fidelity and
this fact stays behind our choice of the symmetrised
quantum Rényi divergence.

The Rényi divergence for α ∈ (0, 1) has the following
properties:

1. Hα(%‖σ) ≥ 0, equality if σ = %.

2. Hα(%1 ⊗ ξ1‖%2 ⊗ ξ2) = Hα(%1‖%2) +Hα(ξ1‖ξ2).

3. Hα(U(%)‖U(σ)) = Hα(%‖σ) for any unitary channel
U .

Additionally for α ∈ [ 12 , 1) one has the data processing
inequality:

4. Hα(ε(%)‖ε(σ)) ≤ Hα(%‖σ) for any quantum chan-
nel ε.

2. Quantum programming inequalities and
fidelities of channels

Any pair of quantum channels on an open quantum
system can be realised as a partial trace of a unitary
channel on the bigger closed system

εi(%) = TrB(U(%⊗ ξi)).

We say then that a channel εi is induced by a state ξi.
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Using the above properties of the Rényi divergences
one can prove the following inequality involving channels
and their inducing states:

Hα(ε1(%1)‖ε2(%2)) ≤ Hα(ξ1‖ξ2) +Hα(%1‖%2) (1)
for α ∈ ( 12 , 1). One can get rid of the arguments of the
channels

Hα(ξ1, ξ2) ≥

inf %1, %2 (Hα(ε1(%1)‖ε2(%2))−Hα(%1‖%2)) , (2)
of using the α-fidelities

Fα(ξ1, ξ2) ≤ inf %1, %2

(
Fα(ε1(%1), ε2(%2))

Fα(%1, %2)

)
. (3)

the right hand side (RHS) will be the definition of fidelity
of channels ε1, ε2 and the above inequality says, that the
α-fidelity of two channels is always greater or equal to the
α-fidelity of their inducing states.

A programmable quantum computer is a device real-
ising a constant unitary operation on two registers: the
data register and the program word register. Tracing
out the program register, the device performs a channel
on the data register, induced by the state of the pro-
gram register. The inequalities (3) relates the α-fidelity
of channels to the the α-fidelity of their inducing (pro-
gramming) states. That is why we call them the quantum
programming inequalities.

In particular, the α-fidelity of two unitary channels
is 1 if they differ by a phase factor, otherwise 0. This
implies that their programming states have to be orthog-
onal, and using the quantum programming register of N
qubits one can program only 2N unitary operations on
the data register, hence the universal quantum computer
(implementing all possible unitary gates) is not possible
(see [3]).

3. Probing the environment

If one couples a quantum system to an environment
and wait for a time t, a state of the system is affected by
a quantum channel induced by the Gibbs state of the en-
vironment. Assume that we are able to couple a probing
system to the same environment prepared in two different
inverse temperatures β1 and β2. Two Gibbs states com-
mute and hence calculation of LHS of (3) is very simple.
One gets

ln (Z(αβ1 + (1− α)β2, HE))

−α ln (Z(β1, HE))− (1− α) ln (Z(β2, HE))

≤ inf
t≥0

{
ln(Fα

(
ε
(t)
2 , ε

(t)
1

)
), for α ∈ (0, 12 )

ln(Fα
(
ε
(t)
1 , ε

(t)
2

)
), for α ∈ [ 12 , 1)

. (4)

According to our assumptions and predictions about the
Hamiltonian of the environment, we calculate the left
hand side (LHS). We fix the time t and perform full quan-
tum process tomography of ε1 and ε2 and then calculate
Fα
(
ε
(t)
1 , ε

(t)
2

)
via numerical optimisation from the exper-

imental data. If the inequality is not satisfied for any
value of α, then our assumption about the environment

is wrong. Notice that no knowledge about the interaction
term in Hamiltonian (neither about the Hamiltonian of
the probing system) is necessary.

4. Example

Assume that the system of interest is a 2-level atom in
a multi-mode vacuum

H = HS +HE +HI =

~ω0

2
σz +

∑
k

~ωk
(
b†kbk +

1

2
I
)
+
∑
k

σz
(
gkb
†
k + g∗kbk

)
,

this model is exactly solvable (up to Born, Markov and
RW approximately, see [4]) and one gets

ε(t)(%) =

(
%00 Γ (t) %01

Γ (t) %10 %11

)
,

where

Γ (t) = exp
[
−
∑
k

4|gk|2

~ω2
k

coth
(1
2
β~ωk

)[
1− cos(ωkt)

]]
.

It is possible to determine the value of the RHS

Fα(ε(t)1 , ε
(t)
2 ) =

(
1 + Γ2(t)

2

)1−α(
1 + Γ1(t)

2

)α
+

(
1− Γ2(t)

2

)1−α(
1− Γ1(t)

2

)α
.

Let us assume now that the true environment is a on-
mode vacuum of an unknown frequency ω1. We assume
a value (unknown) of ω and we calculate the LHS of (4):
− log2(1− exp(−(αβ1 + (1− α)β2)ω))

+α log2(1− exp(−β1ω))

+(1− α) log2(1− exp(−β2ω)).

For the RHS calculated (measured) for β1~ = 2, β2~ =

20, g1/
√
~ = 0.3 and ω1 = 1, we calculate the LHS for

3 assumed values of ω: 3, 3.1, and 3.5 (see Fig. 1). The
limit value is ≈ 3.1 (red). The value 3.5 (cyan) is forbid-
den.

Fig. 1. LHS vs. α for ω = 1 (blue), ω = 1 (green),
ω = 3.1 (red), ω = 3.5 (cyan).
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5. Conclusions

The presented method is general and applies to any
open quantum system interacting with environment. It
lets us to falsify the assumptions about the spectrum
of the environment or to find the restrictions on the
set of free parameters in a considered model of system–
environment interaction. In contrary to all known meth-
ods of probing the environment (up to our best knowl-
edge), our method does not require any knowledge about
the mechanism of interaction. For details, see [5].
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