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The dynamics of magnetization in low-dimensional systems of micromagnets has been a very interesting subject
of scientific studies last years. Excitations in such systems may have forms of normal modes. The frequency of the
mode can be determined with the use of analytical methods as well as of micromagnetic numerical techniques. One
of the latter is the Hamiltonian dynamical matrix method. The method is an analogue of that used to determine
oscillations of atoms in crystal. The advantage of it is the possibility of calculating both of all frequencies and profiles
of normal modes. Excitations in a finite system can depend on the size of it, as was noticed by experimentalists.
The aim of this study is an analysis of eigenstates of the chain consisting of finite numbers of nanomagnets and
dependence of states on orientation of magnetic moments and external magnetic field.
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1. Introduction

The dynamics of magnetization in a low-dimensional
system of nanomagnets has been an object of many stud-
ies in the last decades. This interest is related to the
development in magnetic storage and sensors, especially
in the case of thin films of magnetic materials [1]. The
magnetic elements used for this purpose have the eigenex-
citation frequencies within the range of microwave waves
(3–30 GHz). To protect such devices from thermal noise,
the study of the dynamics of magnetic moments in them
is required [2]. A research is also focused on a system
build with the use of nanowires, e.g. one-dimensional
systems [3, 4].

The calculation of eigenfrequencies for finite size mag-
nets can be done analytically, if the shape of them is el-
lipsoidal, since for it the demagnetised factors are known.
For other shapes one can use numerical methods. One of
the latter is micromagnetic technique called Hamiltonian
dynamical matrix method (HDMM) [5, 6]. It is similar
to the calculation of vibration in crystal and provides a
matrix of complex Hermitian eigenvalue problem. The
advantage of this method is a possibility to determine all
possible frequencies of harmonic oscillations as well as
profiles of normal modes just by one-step calculation.

The aim of the paper is to analyse eigenstates of one-
dimensional systems consisting of rectangular cells, con-
taining the same magnetic moment. We use HDMM
method for this purpose and look for normal modes of ex-
citation and their dependence on orientation of magnetic
moments and a direction of the magnetic field. Accord-
ing to this method of analysis we include in the model
only interactions between neighbouring moments and in-
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teractions of the moments with the magnetic field. The
material constants are assumed to be 1 in appropriate
units.

2. HDMM method for one-dimensional system

We consider the row of rectangular cells placed along
line, let us say in y direction. Cells are numbered from 1
to N . Each cell contains the reduced magnetic moment
mk = Mk/Ms, where Ms is a saturation magnetisa-
tion and k = 1, 2, . . . N . In spherical coordinate system
(r, θ, φ) the vector mk can be written as

mk(t) = (1)

(sin θk(t) cosφk(t), sin θk(t) sinφk(t), cos θk(t)).

The starting point for the method is determination of an
equilibrium state. We assume that this state is found (for
example using the micromagnetic methods based on the
numerical codes [7]) and described by the set of angles
θ0k, φ

0
k related to each moment in cell k (see Fig. 1).

Fig. 1. The magnetisation vector mk. The symbol
δmk denotes the small change of the magnetisation be-
ing the result of interaction between neighbouring mo-
ments and with the magnetic field.
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We restrict ourself to the small excitation from equi-
librium state. In this case the change in position of mag-
netic moments can be described as

θk(t) = θ0k + δθk(t), φk(t) = φ0k + δφk(t), (2)
where δθk(t) and δφk(t) are small changes of angles.
These changes of positions result in change of energy den-
sity E (i.e. energy per unit volume). The energy is a sum
of interaction between magnetic moments and the inter-
action of each moment with an external magnetic field
H. The former can be defined as

Eexch = A

N∑
k=1

2∑
n=1

1−mk ·mn

a2kn
, (3)

whereas the latter is given by the formula

Eext = −µ0MsH ·
N∑
k=1

mk. (4)

The symbol A denotes the exchange coupling constant
and akn is related to the distance between moments mk

and mn. The second sum in Eq. (3) runs over near-
est neighbours of mk (two of them in a linear chain).
Choosing the change in angles δθk, δφk as generalized co-
ordinates and accompanying them with appropriate gen-
eralised momenta, we can write the Hamilton equation
for each cell. Assuming that deviation from equilibrium
can be described using the exponential form exp(iωt),
we can finally end up with the set of equations forming
the following eigenvalue problem [6]:

Cν = λ̃ν, (5)
where C is a matrix with non-zero elements defined as
follows:

C2k−1,2l−1 = −Eθkφl

sin θk
, C2k−1,2l = −

Eθkθl
sin θk

C2k,2l−1 =
Eφkφl

sin θk
, C2k,2l =

Eφkθl

sin θk
. (6)

ν is an eigenvector containing changes of angles ν =
(δφ1, δθ1, δφ2, δθ2, . . . δφN , δθN )T . The symbol Eαkβn

denotes derivatives of a total energy density respect to
angles α and β, taken for the value defined in cell k
and n, respectively. Indices k and l belong to the set
{1, 2, . . . , N}. The eigenvalue λ̃ is related to the eigen-
frequency by the formula λ̃ = iMs

γ ω, where γ is a gyro-
magnetic ratio.

The solution of eigenvalue problem (5) provides the
eigenfrequency and the corresponding profile of a normal
mode. The energy of the excitation is given by formula
E = E0 +

1
2

∑N
n=1

∑N
l=1(Eφnφl

δφnδφl + 2Eφnθlδφnδθl +
Eθnθlδθnδθl).

3. Normal modes for a finite chain

We focus our attention on the chain of nanomagnets
with finite size and additionally assume periodic bound-
ary conditions. The derivatives of interaction energies (3)
and (4) for such a system can be represented by appro-
priate derivatives of magnetic moments mk. The latter
are given by the formulae

∂2Eexch
∂αk∂βl

=



−2A
a2

2∑
n=1

∂2mk

∂αk∂βl
·mn, l = k

−2A
a2

∂mk

∂αk
· ∂ml

∂βl
,

l, k denote
nearest
neigh-
bours

0

k 6= l and
do not de-
note near-
est neigh-
bours

, (7)

∂2Eext
∂αk∂βl

=

 −µoMsH ·
∂2mk

∂αk∂βl
l = k,

0 l 6= k.

. (8)

The calculation was done for two types of orientations
of magnetics moments mk. The first type corresponds
to the system with the same orientation of all magnetic
moments given by the angles θ and φ. The another one
is related to the case, where half of the chain has one
orientation θ1j , φ1j , j = 1, 2, . . . N ′, and the rest of it has
another orientation θ2j , φ2j , j = N ′, N ′ + 1, . . . N .

Fig. 2. The eigenfrequencies ω of normal modes for a
chain of nanomagnets with (b) and without (a) mag-
netic field. All magnetic momentsmk are parallel. The
label “no.” denotes the number of solution of eigenvalue
problem.

In Fig. 2 we present the frequencies of normal modes
for chain of N = 30 nanomagnets with all magnetic mo-
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Fig. 3. The eigenfrequencies ω of normal modes for the
chain of nanomagnets with two different orientations of
magnetic moments (half of the chain with one orienta-
tion and half with another one). The label “no.” denotes
the number of solution of eigenvalue problem.

ments parallel to each other (the angles are given as fol-
lows: θk = π/2, φk = π/2, k = 1, 2, . . . N). Part (a)
represents the case without magnetic field, whereas part
(b) corresponds to presence of the magnetic field, with
direction given by angles θB = π/2, φB = π/2. The
strength of the magnetic field is taken as 1 in an appro-
priate unit. The main difference between the presence
and the absence of the magnetic field is lack of zero fre-
quency mode in the former case.

The allowed frequencies for two different orientations
of magnetic moments along a chain are presented in
Fig. 3. Half of the chain has orientation given by angles
θk = π/2, φk = π/2, k = 1, 2, . . . N ′, whereas for another
half angles are θk = π/7, φk = π/7, k = N ′, N ′+1, . . . N .
We observe for this case, in the presence of the magnetic
field (with orientation the same as in a homogeneous
chain), that there are frequencies with imaginary part
different from zero. They correspond to localised excita-
tions, which vanish along the chain. It was proven that
the values of these frequencies depend on the orientation
of magnetic moments within two parts of the chain.

4. Conclusions

The HDMM method allows us to calculate all possi-
ble frequencies for given orientation of a magnetic field
and magnetic moments as well as to determine the pro-
file of excitations. The frequencies for the homogeneous
chain (the same orientation of magnetic moments) have
real values which correspond to waves travelling across
system.

In the chain consisting of two sub-chains, with differ-
ent orientations ofmk, we observe other solutions. There
exist modes with complex values of frequencies ω, which
are related to localised excitations. This way, by manip-
ulation of magnetic moment orientations, it is possible to
extinguish selected frequency mode.
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