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The Galois symmetry of exact Bethe Ansatz eigenstates for magnetic pentagonal ring is shown to bear a close
analogy to some crystallographic constructions. Automorphisms of number field extensions associated with these
eigenstates prove to be related to choices of the Bravais cells in the finite crystal lattice Z2 × Z2, responsible for
extension of the cyclotomic field by the Bethe parameters.
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1. Introduction

It is well known that the eigenproblem of the Heisen-
berg Hamiltonian for the ring of N nodes with the spin- 12
and isotropic nearest neighbour interactions (the XXX
model) [1] is expressible in terms of integers, and there-
fore its exact solution needs a finite extension of the prime
field Q of rationals [2]. The aim of the present note is
to point out some consequences of this observation for
the case of N = 5, i.e. for the magnetic pentagonal
ring. Eigenstates and eigenvalues for this case were pre-
sented in [3] in terms of cyclotomic number field Q(ω),
ω = exp(2π i/5), i.e. the extension of Q by the primitive
fifth root of unity, associated with the Fourier transform
for this case. Q(ω) can be seen as the complex Heisenberg
number field, that is the minimal field sufficient to ex-
press the solution of the eigenproblem of the Heisenberg
Hamiltonian. Still, Q(ω) is not sufficient to express this
solution in the form prescribed by the Bethe Ansatz [4],
that is in terms of spectral parameters of the Bethe pseu-
doparticles, or, equivalently, of the corresponding pseu-
domomenta or portions of phase. It was shown in [3]
that the standard Bethe Ansatz presentation requires a
further extension of the complex Heisenberg field to the
so-called Bethe number field B, within the procedure re-
ferred there to as the inverse Bethe Ansatz: how to deter-
mine the Bethe parameters (pseudomomenta, etc.) once
the exact solution of the Heisenberg eigenproblem is al-
ready known. The inverse Bethe Ansatz for N = 5 was
solved in [3], and the Galois symmetry associated with
this case was thoroughly discussed in [5], in terms of a
short exact sequence of automorphism group of consec-
utive field extensions, and appropriate homomorphism
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groups. This short exact sequence bears a strong anal-
ogy with crystallographic constructions of space groups
as extensions of translation groups by point groups.

In the present note we discuss in some detail this anal-
ogy of number field extensions to crystallography. We fo-
cus on discussion of the corresponding arithmetic classes
of all possible actions of the Galois group of the cy-
clotomic field on the quotient B/Q(ω), associated with
choices of a Bravais cell within the two-dimensional lat-
tice with the Born–Karman period two. The group of
all automorphisms of such a lattice is GL(2,Z2), and the
action which defines the Galois group of the Bethe field
B arises as one of three possible embeddings. We present
a transparent construction of these embeddings.

2. Galois extensions and crystallography

The analogy between Galois extensions associated with
Bethe Ansatz eigenstates and crystallography bases on
comparison of two exact sequences of groups and homo-
morphisms (we use here the notation of [5])

1mult −→ D2
κ−→G

ω−→C4 −→ 1mult (1)
and

0add −→ T
κ−→G

ω−→Q −→ 1mult, (2)
where D2 = Aut (B/Q(ω)) and C4 = Aut (Q(ω)/Q) are
the Galois groups of appropriate field extensions, written
in the Schoenflies notation as the corresponding point
groups, whereas T and Q are the corresponding transla-
tion and point group, respectively, of a crystal lattice.
Moreover, 1mult and 0add is the trivial (one-element)
group in the multiplicative and additive notation, respec-
tively. Arrows in Eqs. (1) and (2) denote group homo-
morphisms, such that the image of each left morphisms
coincides with the kernel of its right neighbour. Thus, in
particular, κ: T → G is the monomorphism (injection),
whereas ω: G → Q is the epimorphism (surjection) (cf.,
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e.g. Lang [6] and Mozrzymas [7, 8] for algebraic and
crystallographic definitions).

We describe shortly the arithmetic meaning of the ac-
tive group C4 and passive D2 of the exact sequence (1),
arising from the Heisenberg eigenproblem of pentagon.
The cyclotomic field Q(ω) is a linear space over Q, of
dimension 4, with the cyclic basis (1, ω, ω2, ω3), and thus
the active group C4 = {τl|l = ±1,±2} is generated by
the automorphism τ2 which sends the radical ω to ω2. It
is given by the matrix

τ2 =


1 0 −1 0

0 0 −1 1

0 1 −1 0

0 0 −1 0

 (3)

in the cyclic basis. We also recall here that the active
group C4 acts regularly on the interior {k = ±1,±2} of
the Brillouin zone B = {0,±1,±2} of the pentagon, such
that τ1 is the identity, τ−1 reverses the sign of the quasi-
momentum k → −k, and the squares τ2 and τ−2, change
also the values of quasimomenta (k → ±2 kmod5).

The passive group D2 arises from the inverse Bethe
Ansatz for the case of two spin deviations in pentagon,
which results in a quadratic equation

(1 + ωk)a2 − (E + 4)a+ (1− ωk) = 0 (4)
for the portion of phase

a = e ip =
λ+ i/2

λ− i/2
(5)

of a Bethe pseudoparticle in the state with given energy
E and quasimomentum k (recall that such a classification
of exact eigenstates is unique in the two-magnon sector
of pentagon, cf. Table I). TABLE I

Classification of BA eigenstates for pentagon for the high-
est weight vectors r′ = r = 2. ν ` r′ denotes the Young
diagram of a partition of r′, and νL is a rigged string
configuration equipped with total quasimomentum k.

ν ` r′ νL k

{2} 2 2

{12} −2

−2
1

{12} −2

2
0

{12} 2

2
–1

{2} −2 –2

In Eq. (5), p denotes the pseudomomentum, and λ —
the spectral parameter of a Bethe pseudoparticle. Each
row in Table I contains a state of the highest weight for
the pentagonal magnet, parametrized by rigged string
configurations νL, with ν being the partition of r′ = r =
2 and denoting the string configuration, while L describes

the unique collection of riggings [9, 10]. It follows that
all roots of Eq (4) for the interior {k = ±1,±2} of the
Brillouin zone of pentagon span the number field B/Q(ω),
which is a linear space over the cyclotomic field Q(ω), of
dimension four, with the basis (1, γ1, γ−1, γ1γ−1), where

γ1 =

√
−1− 2

√
5, γ−1 =

√
−1 + 2

√
5 (6)

are radicals associated with Eq. (4) for k = ±1 (squares
in C4) and k = ±2 (non-squares in C4), respectively.

The above basis of the quotient number field B/Q(ω)
can be intepreted, after change to additive notation
as a two-dimensional module Z2 × Z2 over the cyclo-
tomic field (observe that γ21 ∈ Q(ω), γ2−1 ∈ Q(ω)),
generated by any ordered pair (a1, a2) from the set
{γ1, γ−1, γ1γ−1}. In other words, this basis constitutes
a two-dimensional crystal lattice with the Born–Karman
period 2 (cf. Fig. 1), and ordered pair (a1, a2) defines a
Bravais cell for Z2 × Z2 (cf. Fig. 2). Thus

AutD2 =



τxy =

(
1 0

0 1

)
; τyx =

(
0 1

1 0

)
;

τxz =

(
1 1

0 1

)
; τzx =

(
1 1

1 0

)
;

τyz =

(
0 1

1 1

)
; τzy =

(
1 0

1 1

)
.


, (7)

is the group of all automorphisms of the lattice Z2 ×Z2.
It is well known that the crystallographic space groups
in n dimensions are defined in terms of actions of the
active group Q on the lattice Zn, i.e. homomorphisms
∆ : Q→ AutZn ≡ GL(n,Z).

Uy • γ−1 Uz • γ1γ−1
0, 1 1, 1

E • 1 Ux • γ1
0, 0 1, 0

Fig. 1. The periodic square Z2 × Z2 as a regular or-
bit of the passive group D2. Elements of the group
AutD2 = GL(2,Z2) are classified by pairs from the set
{Ux, Uy, Uz}, corresponding to the choice of a Bravais cell
of Z2 × Z2 as a two-dimensional lattice with the Born–
Karman period N = 2.

It is clear that the analogs for the pentagonal ring are
homomorphisms ∆ : C4 → GL(2,Z2). Each such action
is readily defined by prescribing its value on the generator
τ2 ∈ C4 of the active group C4. The simplest possibility
is the trivial action, namely

∆1(τ2) = τxy =

(
1 0

0 1

)
, (8)

which yields G1 = C4×D2, the direct product of the ac-
tive and the passive group. The other three possibilities
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Fig. 2. Six possible choices of a basis on the lattice
Z2 × Z2.

∆2(τ2) = τyx =

(
0 1

1 0

)
;

∆3(τ2) = τyx =

(
1 1

1 0

)
;

∆4(τ2) = τyx =

(
1 0

1 1

)
,

(9)

are mutually conjugated by inner automorphisms of
the group GL(2,Z2), and yield a non-trivial extension,
namely the Galois group G of the Bethe number field,

G = Aut (B/Q(ω)), |G| = 16, (10)
described in detail in [5]. Each time, it is a semidirect
product of the active and the passive group, with appro-
priate action. All these semidirect products are mutually
isomorphic. It is worth to add that the analogy of the
Galois group G of the Bethe field B with space groups
results to be somehow trivial, since G does not admit any
non-trivial factor system.

3. Conclusions

We conclude that the pair (C4, D2) yields two arith-
metic classes of group extensions, given by Eqs. (8) and
(9). The first class ∆1 gives the direct product, which
is not consistent with the Galois symmetry of the Bethe
number field B, whereas the second class {∆2,∆3,∆4},
yields three isomorphic groups, and the first of them, of
which, ∆2, realizes the Galois automorphisms of B, con-
sistent with our choice of radicals ω, γ1, γ−1 generating B.
We hope that the analogy between the Galois symmetry
of exact Bethe Ansatz eigenstates and crystallographic
constructions displayed here might shed some light on
structural properties to both items. We also wish to ob-
serve that the Born–Karman periodic boundary condi-
tions, which seem to be somehow artificial in the midst
of crystallography and physics of bulk solids, arise in a
natural way within finite extensions of the prime field Q
of rationals in integrable systems.
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